MASCOTS’17 Paper: Energy Demand Response Scheduling

An Energy Efficient Demand-Response Model for High Performance Computing Systems, Kishwar Ahmed, Jason Liu, and Xingfu Wu. In Proceedings of the 25th IEEE International Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS 2017), September 2017.  [paper]


Demand response refers to reducing energy consumption of participating systems in response to transient surge in power demand or other emergency events. Demand response is particularly important for maintaining power grid transmission stability, as well as achieving overall energy saving. High Performance Computing (HPC) systems can be considered as ideal participants for demand-response programs, due to their massive energy demand. However, the potential loss of performance must be weighed against the possible gain in power system stability and energy reduction. In this paper, we explore the opportunity of demand response on HPC systems by proposing a new HPC job scheduling and resource provisioning model. More specifically, the proposed model applies power-bound energy-conservation job scheduling during the critical demand-response events, while maintaining the traditional performance-optimized job scheduling during the normal period. We expect such a model can attract willing articipation of the HPC systems in the demand response programs, as it can improve both power stability and energy saving without significantly compromising application performance. We implement the proposed method in a simulator and compare it with the traditional scheduling approach. Using trace-driven simulation, we demonstrate that the HPC demand response is a viable approach toward power stability and energy savings with only marginal increase in the jobs’ execution time.


Not yet available.


HPPAC’17 Paper: Energy-Aware Scheduling

When Good Enough Is Better: Energy-Aware Scheduling for Multicore Servers, Xinning Hui, Zhihui Dua, Jason Liu, Hongyang Sun, Yuxiong He, David A. Bader. In Proceedings of the 13th Workshop on High-Performance, Power-Aware Computing (HPPAC 2017), held in conjunction with 31st IEEE International Parallel and Distributed Processing Symposium (IPDPS 2017), May 2017. [paper]

Power is a primary concern for mobile, cloud, and high-performance computing applications. Approximate computing refers to running applications to obtain results with tolerable errors under resource constraints, and it can be applied to balance energy consumption with service quality. In this paper, we propose a “Good Enough (GE)” scheduling algorithm that uses approximate computing to provide satisfactory QoS (Quality of Service) for interactive applications with significant energy savings. Given a user-specified quality level, the GE algorithm works in the AES (Aggressive Energy Saving) mode for the majority of the time, neglecting the low-quality portions of the workload. When the perceived quality falls below the required level, the algorithm switches to the BQ (Best Quality) mode with a compensation policy. To avoid core speed thrashing between the two modes, GE employs a hybrid power distribution scheme that uses the Equal-Sharing (ES) policy to distribute power among the cores when the workload is light (to save energy) and the Water-Filling (WF) policy when the workload is high (to improve quality). We conduct simulations to compare the performance of GE with existing scheduling algorithms. Results show that the proposed algorithm can provide large energy savings with satisfactory user experience.
author={X. Hui and Z. Du and J. Liu and H. Sun and Y. He and D. A. Bader},
booktitle={Proceedings of the 13th Workshop on High-Performance, Power-Aware Computing (HPPAC 2017), held in conjunction with 31st IEEE International Parallel and Distributed Processing Symposium (IPDPS 2017)},
title={When Good Enough Is Better: Energy-Aware Scheduling for Multicore Servers},

REHPC’16 Paper: Program Power Profiling Based on Phases

Fast and Effective Power Profiling of Program Execution Based on Phase Behaviors, Xiaobin Ma, Zhihui Du and Jason Liu. In Proceedings of the 1st International Workshop on Resilience and/or Energy-Aware Techniques for High-Performance Computing (RE-HPC 2016), held in conjunction with the 7th International Green and Sustainable Computing Conference (IGSC 2016), November 2016. [paper]

Power profiling tools based on fast and accurate workload analysis can be useful for job scheduling and resource allocation aiming to optimize the power consumption of large-scale high-performance computer systems. In this paper, we propose a novel method for predicting the power consumption of a complete workload or application by extrapolating the power consumption of only a few code segments of the same application obtained from measurement. As such, it provides a fast and yet effective way for predicting the power consumption of a single-threaded execution of a program on arbitrary architectures without having to profile the entire program’s execution. The latter would be costly to obtain, especially if it’s a long running program. Our method employs a set of code analysis tools to capture the program’s phase behavior and then adopts a multi-variable linear regression method to estimate the power consumption of the entire program. We use SPEC 2006 benchmark to evaluate the accuracy and effectiveness of our method. Experimental results show that our power profiling method achieves good accuracy in predicting program’s energy use with relatively small errors.
author={Xiaobin Ma and Zhihui Du and Jason Liu},
booktitle={Proceedings of the 7th International Green and Sustainable Computing Conference (IGSC)},
title={Fast and effective power profiling of program execution based on phase behaviors},