
Scalable Emulation of SDN Applications with
Simulation Symbiosis

Jason Liu1 and Cesar Marcondes2
1 Florida International University, Miami, Florida, USA

2 Federal University of São Carlos, São Carlos, SP, Brazil

I. OVERVIEW

Software Defined Networks (SDN) is an inspiring technol-
ogy that promises to make networks both easier and cheaper
to operate. Therefore, SDN makes networks flexible and
programmable, by using a language so simple that average
software engineers can comprehend and use to quickly recon-
figure centrally the network, without dealing with distributed
protocols manually configured that are prone to errors and
time-consuming.

The capability of studying and experimenting with large-
scale Future Internet SDN applications is of significant im-
portance. For example, the Global Environment for Network
Innovations (GENI) has been a community-based effort for
building a collaborative and exploratory network experimen-
tation platform for studying future network applications [1].
Follow-up efforts include various cyber-infrastructure design,
development, and build-out projects, such as NSFCloud [2],
[3], for building mid-scale cloud-computing testbeds in the
U.S. There are similar attempts made in European Union,
Japan, Brazil, and other nations.

While all these efforts would pave the way for the network
researchers (as well as the network engineers) to validate
design and implementation issues directly on the cyber-
infrastructure testbeds, one needs to understand the defi-
ciencies of solely relying on real-world implementation and
physical deployment in network studies. We illustrate this
important issue through a few hypothetical examples:

• A new robust map-reduce algorithm [4] needs to be
evaluated for multi-tenant cloud computing environments.
The performance of the algorithm depends on the job
characteristics (such as the distribution on the number
of jobs and the individual job sizes), as well as the
configuration and stability of the available resources of
the cloud platform. One would find it extremely time-
consuming to explore the entire algorithmic parameter
space on physical testbeds; let alone the highly diverging
cloud configurations.

• A novel enterprise network traffic engineering solution
based on OpenFlow [5], which uses opportunistic traffic
load balancing and multi-path schemes to increase the
throughput of heavy-hitter flows, has been proposed.
Important questions remain unanswered—for example,
whether this algorithm is robust under various traffic
conditions, whether the algorithm would perform well
due to partial deployment with varying proportions of

non-cooperative entities, and whether the algorithm could
scale out to a larger number of ISPs.

• A data center transport-layer protocol has been proposed
(similar to [6]), which is expected to both reduce flow
completion time and increase data throughput. The al-
gorithm has been implemented and tested in a small-
scale homespun DCN testbed; one needs to know whether
it is ready for deployment in a production data center.
Before that, however, one would like to investigate the
algorithm’s optimal performance conditions for the large
data center with high bisection network capacity and
also with various traffic loads with known stochastic
properties.

These examples highlight some of the intrinsic limitations
of cyber-infrastructure testbeds. Another popular method is to
use emulation. For example, the current widespread use of
container-based emulation combined with a software switch
SDN capable have change the way research is conducted in
SDN. Mininet is a popular container-based emulation environ-
ment built on Linux for testing OpenFlow applications. Using
Mininet, one can create network experiments using a set of
virtual hosts and virtual switches connected as an arbitrary
network. With Mininet, it is relatively easy to build and
execute experiments. However, it is well-known that Mininet
only provides a limited capacity for both CPU and network
I/O. Consequently, it does not work well on large scenarios
and topologies with large volume of traffic, even if used in a
cluster environment.

We propose a method for applying a symbiotic approach
that combines simulation and emulation for improving the
scalability of network experiments. The essential aspect of our
approach is to remove a large portion of traffic from emulation.
Rather than re-creating each network packet generated from
applications, we can capture in real time the aggregate traffic
demand of these applications and simulate the corresponding
effect on the network queues (effective bandwidths, packet
loss, and packet delays), that can affect other applications.

With the symbiotic approach, we achieve two objectives.
First, we can effectively integrate emulation and simulation
so that one can conduct hybrid network experiments with
flexibility and scale. For example, we can use Mininet to
directly run SDN applications using the virtual machines and
software switches, whereas the connections between the virtual
machines can be integrated with large-scale network models
performed in simulation. In this case, the SDN applications can



 

 

 

Simulated Network

Network Pipe

H1 H2

h2h1

real network traffic

simulated traffic

simulated traffic

simulated traffic

q1

q2

q3

λ1
λ2

λ3

Fig. 1. A symbiotic network experiment.

be tested under diverse virtual network scenarios. Second, the
symbiotic approach can be used to coordinate separate Mininet
instances, each representing a set of different yet possibly
overlapping network flows. In this case, we can significantly
increase the scalability of the network emulation experiments
in a cluster environment.

II. SYMBIOTIC SIMULATION

We propose a symbiotic approach that can effectively com-
bine simulation and emulation [7]. A network experiment
consists of a virtual network with an arbitrary topology, poten-
tially with a large number of hosts and routers. For a specific
experiment, we can examine a subset of network protocols
and applications by directly running them on an emulation
testbed. Fig. 1 shows an example where the real applications
are running on two physical hosts, H1 and H2. To test them,
we specify a simulated network, which contains virtual hosts,
h1 and h2, that correspond to the two physical hosts. We
“modulate” the real network traffic between the physical hosts
using statistics collected from the simulated network. More
specifically, we use a facility, called the “network pipe”, to
represent the sequence of network queues supposed to be
traversed by the real network traffic if it were placed on
the simulated network. The example shows one network pipe
consisted of three simulated network queues: q1, q2, and q3.
(For brevity, we focus only on the forward traffic from H1
to H2 and ignore the traffic in the reverse direction.) It is
important to know that with symbiotic simulation, the network
packets generated between the physical hosts, from H1 to H2,
do not need to be captured and simulated individually as in
real-time simulation. Instead, the symbiotic system captures
only the traffic demand at the physical hosts and then sends
this information to the simulator so that the simulator can
regenerate the same traffic and model its effect over the
simulated network (e.g., packet delays and losses).

The network pipe is a mechanism used by the emulator to
reflect the traffic conditions in the simulated network so that
the packet delays and losses can be applied to the real traffic.
In [7], we derived a closed-form solution, for which we only
capture the main results below.

In general, let q1, q2, · · · , qn be the list of network queues
in simulation that are supposed to be traversed by the real
network traffic. In simulation, we collect three measurements

for each queue qi and periodically report them to the emulator:
1) We measure pi, which is the average drop probability due to
buffer overflow; 2) We measure λi, which is the arrival rate of
the regenerated emulated network flow; and 3) We measure wi,
the average packet queuing delay. Once these measurements
are propagated to the emulator, we can calculate the packet
drop probability for the network pipe from individual loss drop
probabilities of the constituent queues. And we can calculate
the service rate (i.e., the bandwidth) of the network pipe:

µ =
λp(∆T +W2 −W1)

∆T
(

1 +W1λp −
√

1 +W 2
1 λ

2
p

)
where λp = min1≤i≤n{(1 − pi)λi}, which is the mini-
mum effective arrival rate at all queues; ∆T is the sample
interval (say, 100ms), which is also the interval at which
the simulator updates the emulator with the measurements;
W1 =

∑
1≤i≤n wi is the total queuing delay through the

n queues measured in simulation; and W2 is the average
packet queuing delay through the corresponding network pipe
measured in emulation.

After calculating p and µ, we can apply them at the network
pipe in the emulator, which is essentially a first-in-first-out
queue installed between the physical hosts. The network pipe
will randomly drop packets according to the set probability
p and process packets according to the given bandwidth µ,
which will effectively add queuing delays to the packets as
they go through the network pipe. In this paper, we will show
how to implement the network pipe using the Linux traffic
control (tc) facility.

In [7], we conducted extensive experiments to show that this
symbiotic approach is able to produce accurate results. Using
this approach, we can test the real applications running on
the physical environment with different network scenarios—
such as running on different network topologies, testing with
diverse traffic intensity, and using different workload and
user demand. In this way, we can enable high-fidelity high-
performance large-scale network experiments by combining
both simulation and emulation testbed, using simulation for the
full-scale detailed network representation and using emulation
testbed for directly executing network applications for real. On
the one hand, emulation testbeds can execute real applications,
operate with real systems, accept real input, produce real
output, and respond to real network conditions. They provide
the operational realism and fidelity usually unattainable by
modeling and simulation. On the other hand, simulation is
expedient for constructing and testing models to obtain “the
big picture”, which would be highly valuable especially when
a good understanding of the system’s complex behavior is
absent. Simulation makes it easy for prototyping, for exploring
the design space, for assessing the performance in diverse
network settings, and for investigating what-if scenarios.

III. MININET SYMBIOSIS

We describe our design for integrating the symbiotic ap-
proach with Mininet. A detailed discussion can be found



in [8]. Our goal is to execute the target network applications
in Mininet containers while creating an illusion that these
applications are running on an arbitrary network. Our approach
starts by first having the user to specify a network model,
which includes a simulated network topology (on which the
target real applications are expected to run), as well as network
protocols and applications, and how they are engaged during
the experiment.

Next, the user can identify a subset of hosts to be emulated
in Mininet (we call them emulated hosts). They will be
instantiated as containers and therefore capable of directly
running the target network applications. To reduce overhead,
we also ask the user to identify flows that will be generated
between the emulated hosts during the experiment (we call
emulated flows). This can significantly reduce the facilities
that need to be maintained for symbiosis.

Afterwards, we invoke a process, called downscaling, in
which the original full-scale network simulation model to-
gether with the identified emulation traffic is processed to
produce an reduced emulation model for Mininet. The down-
scaling process first prunes the original network model and
remove all hosts, routers, and links not traversed by emulated
traffic, since they are not needed in emulation involving real
traffic. It then compresses the pruned topology by combining
the intermediate nodes and links visited by the same set of
emulated flows into a single network pipe.

Our symbiotic system consists of a simulation system and an
emulation system running side by side. The simulation system
is a real-time network simulator (we use PrimoGENI [9] for
our prototype implementation), and the the emulation system
consists of one or more Mininet instances, potentially running
on separate machines (see Fig. 2). Communication between
the real-time network simulator and the Mininet instances is
achieved via TCP connections, whereas the simulator func-
tions as the server and each Mininet instance as a client.
The real-time network simulator runs the original full-scale
network; as such, it needs to implement necessary network
elements (such as routers, hosts, network interfaces and links)
and common network protocols (such as IP, TCP, UDP, and
others). In addition, two components are added to the simulator
to facilitate synchronization with the Mininet instances: a
traffic monitor and a traffic generator. The traffic monitor is
used to collect measurements at each queue qi traversed by the
emulated flows, which include the packet drop probability pi,
the arrival rate of emulated flows λi, and the queuing delay wi.
These measurements are collected periodically every ∆T units
of time and then sent to the corresponding Mininet instances.
The traffic generator receives information from Mininet about
the traffic demand dk from applications for each emulated flow
k in terms of the number of bytes requested to be sent during
the last interval. Upon receiving this information, the simulator
generates the emulated flows by initiating the corresponding
TCP or UDP sessions in simulation with the same demand
size accordingly.

In Mininet, the emulated hosts are instantiated as Linux
containers with separate network namespaces, and the switches

Traffic Monitor

Traffic Generator

Real-Time Simulator

Traffic Control

Traffic Monitor

Mininet Instance(pi, λi, wi) 
for all qi 

d1, d2, ... dx

Every ∆T in real time

Fig. 2. Mininet symbiosis setup.

are represented by OVS instances. The virtual Ethernet (veth)
pairs are used to represent the links augmented with the Linux
traffic control (tc) for managing the link properties. Linux
tc is a set of tools (included since kernel 2.2) to allow
users to have fine-grained control over the packet transmission.
Linux tc consists of different queuing mechanisms, easily
composable for handling more complex situations (including
packet mangling, IP firewalling, and bandwidth metering). We
use tc for setting the link bandwidth, the packet delay, and the
random packet loss probability. More specifically, we statically
set the link delay as the cumulative propagation delay of
the links between the consecutive queues that constitute the
network pipe. We modify the packet loss probability and the
link bandwidth dynamically during the experiment using the
measurements from simulation.

Note that such symbiotic approach can support distributed
emulation, where multiple Mininet instances can operate in
parallel, each handling a different set of emulated flows. In
this case, the state of common network pipes is mirrored on
different instances, which will be controlled by the simulator
with the identical link properties.

REFERENCES

[1] NSF Global Environment for Network Innovations (GENI), http://www.
geni.net/.

[2] CloudLab, https://www.cloudlab.us/.
[3] Chameleon - A configurable experimental environment for large-scale

cloud research, https://www.chameleoncloud.org/.
[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” in Proceedings of the 6th Symposium on Operating System
Design and Implementation (OSDI’04), 2004.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[6] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. Liu, and F. Dogar, “Friends,
not foes - synthesizing existing transport strategies for data center
networks,” in Proceedings of the 2014 ACM SIGCOMM Conference
(SIGCOMM), 2014.

[7] M. A. Erazo and J. Liu, “Leveraging symbiotic relationship between
simulation and emulation for scalable network experimentation,” in Pro-
ceedings of the 2013 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation (SIGSIM-PADS), 2013, pp. 79–90.

[8] J. Liu, C. Marcondes, M. Ahmed, and R. Rong, “Toward scalable
emulation of future internet applications with simulation symbiosis,”
in Proceedings of the 19th IEEE/ACM International Symposium on
Distributed Simulation and Real Time Applications (DS-RT), 2015, to
appear.

[9] N. V. Vorst, M. Erazo, and J. Liu, “PrimoGENI for hybrid network
simulation and emulation experiments in GENI,” Journal of Simulation,
vol. 6, no. 3, pp. 179–192, 2012.


