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Motivation: HPC Architecture Is Changing Rapidly

´ End of processor scaling leads to novel architectural design
´ Changes can be transitional and disruptive

´ HPC software adaptation is a constant theme:
´ No code is left behind: must guarantee good performance
´ Need high-skilled software architects and computational physicists

´ New apps: big data analytics

´ Traditional methods are insufficient
´ Middleware libraries, code instrumentation, mini-apps…

´ Need modeling & simulation of large-scale HPC systems and 
applications
´ And the systems are getting larger (exascale is around the corner)
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Related Work: HPC Simulations
´ Full system simulators: 

´ Simics, SimpleScalar, GEM5, COTSon, PTLsim, Asim

´ Analytical tools:  
´ TAU, Vampir, HPCToolkit, Paraver, PACE, ASPEN, Palm, GROPHECY

´ Processor/core simulators: McSimA+, Zsim, Manifold
´ Memory system simulators (DRAM, NVM, Cache): 

´ DRAMSim, USIMM, DrSim, Ramulator, NVMain

´ NoC simulators: BookSim, GARNET, DARSIM, HORNET, TOPAZ, 
DNOC

´ FPGA-based simulators: Ramp Gold, HAsim, DART, Arete
´ Large-scale HPC simulators: BigSim, xSim, SST, CODES
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Related Work: Interconnect Models
´ BigSim (UIUC): for performance prediction of large-scale parallel 

machines (with relatively simple interconnect models), 
implemented in Charm++ and MPI, shown to scale up to 64K ranks

´ xSim (ORNL): scale to128M MPI ranks using PDES with lightweight 
threads, include various interconnect topologies (high-level 
models, e.g., network congestion omitted)

´ SST and SST Macro (SNL): a comprehensive simulation framework, 
separate implementation, one intended with cycle-level accuracy 
and the other at coarser level for scale

´ CODES (ANL): focused on storage systems, built on ROSS using 
reverse computation simulation that scales well
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How about Full-Scale Cycle-Accurate Simulation of 
HPC Systems and Applications?

´ It is unrealistic
´ Extremely high computational and spatial demand
´ Accurate models only limited to certain components and timescale 

´ And it is unnecessary
´ Modeling uncertainties greater than errors from cycle-accurate 

models
´Languages, compilers, libraries, operating systems, …

´System cross traffic

´ Design uncertainties defy specificity of cycle-accurate models
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“All models are wrong but some are useful”
´ Managing expectations:  

´ Ask what-if questions
´ Evaluate alternative designs

´ Explore parameter space

´ Will models ever catch up with 
real-system refresh?
´ As valuable tools for prototyping new systems, new 

algorithms, new applications?

George Box (1919-2013)
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Need tools for fast and accurate performance prediction 
à consider tradeoff

enough



Modeling via Selective Refinement

´ Maintain modeling scalability for large, complex systems
´ We are interested in performance of parallel applications 

(physics code) running on petascale and exascale systems
´ Having full-scale models at finest granularity is both unrealistic and 

unnecessary

´ To find the “right” level of modeling details (just enough to 
answer the research questions) is an iterative process: 
① Start from coarse-level models
② Gather experiment results
③ Identify components as potential performance bottlenecks
④ Replace those components by plugging in more refined models

⑤ Go to #2 until satisfaction
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Our Goals for Rapid Performance Prediction

´ Easy integration with selective models of varying abstractions

´ Easy integration with applications (computation physics code)

´ Short development cycle

´ Performance and scale



Performance Prediction Toolkit (PPT)
´ Make it simple, fast, and most of all useful

´ Designed to allow rapid assessment and performance prediction of large-scale 
scientific applications on existing and future high-performance computing platforms. 

´ PPT is a library of models of computational physics applications, middleware, and 
hardware that allows users to predict execution time by running stylized pseudo-
code implementations of physics applications. 

´ “Scalable Codesign Performance Prediction for Computational 
Physics” project
´ Simian – parallel discrete-event simulation engine

´ Configurable hardware models: clusters, compute nodes, processes/cores, 
accelerators (GPU), interconnect, parallel file systems

´ Application library: benchmark applications (PolyBenchSim, ParboilSim), production 
applications (SNAPSim, SPHSim, SpecTADSim)

´ Data: application instrument data (PolyBench, SNAP, SPH, CloverLeaf), hardware 
specs data (Mustang, Haswell, IvyBridge, SandyBridge, Vortex)
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Simian: PDES using Interpreted Languages
´ Open source, general purpose parallel 

discrete-event library
´ Independent implementation in three 

interpreted languages: Python, Lua, Javascript
´ Minimalistic design: LOC=500 with 8 common 

methods (python implementation)
´ Simulation code can be Just-In-Time (JIT) 

compiled to achieve very competitive event-
rates, even outperforming C++ implementation 
in some cases

´ Support process-oriented world view (using 
Python greenlets and LUA coroutines)
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Interconnection Network Models
´ Common interconnect topologies

´ Torus (Gemini, Blue Gene/Q)
´ Dragonfly (Aries)

´ Fat Tree (Infiniband)

´ Distinction from previous approaches:
´ Emphasis on production systems

´Cielo, Darter, Edison, Hopper, Mira, 
Sequoia, Stampede, Titan, Vulcan, …

´ Packet-level as opposed to phit-level
´For performance and scale (speed advantage in several orders of magnitude, 

allow for full scale models, sufficient accuracy)

´ Seamlessly integrated with MPI
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MPI Model
´ MPI uses Fast Memory Access (FMA) for message passing

´ FMA allows a maximum of 64 bytes of data transfer for each network 
transaction

´ Larger messages must be broken down into individual 64-byte transactions

´ Messaging are performed as either GET or PUT operations (depending 
on the size of the message)

´ A PUT operation initiates data flow from the source to the target node. 
When a packet reaches destination, a response from the destination is 
returned to the source
´ A PUT message consists of a 14-phit request packet (each phit is 24 bits)

´ Each request packet is followed by a 1-phit response packet (3 bytes) from 
destination to source

´ A GET transaction consists of a 3-phit request packet (9 bytes), followed 
by a 12-phit response packet (36 bytes) with 64 bytes of data 
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Integrated MPI Model
´ Developed based on Simian (entities, 

processes, services)

´ Include all common MPI functions
´ Simplistic implementation

´ Point-to-point and collective operations

´ Blocking and non-blocking operations

´ Sub-communicators and sub-groups

´ Process-oriented approach
´ Can easily integrate with most 

application models

´ Packet-oriented model
´ Large messages are broken down into 

packets (say, 64B)

´ Reliable data transfer
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MPI Example15

Hardware Configuration

MPI application

Run MPI



MPI Example

16



3D Torus – Cray’s Gemini Interconnect17

´3D torus direct topology
´Each building block:

´2 compute nodes
´10 torus connections:
±X*2, ±Y, ±Z*2

´Examples: Jaguar, Hopper, 
Cielo, …



Gemini Validation
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Dragonfly - Cray’s Aries Interconnect19

´3-tier topology: 
1. Node-router connection
2. Intra-group connection

(local link arrangement)
3. Inter-group connection

(global link arrangement)
´Routing: MIN and VAL (UGAL)
´Examples: Trinity, …



Aries Validation
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Fat-tree FDR Infiniband21

A 4-port 3-tree Fat-tree
Lin, Xuan-Yi, Yeh-Ching Chung, and Tai-Yi Huang. "A multiple LID routing scheme for 
fat-tree-based InfiniBand networks." Parallel and Distributed Processing Symposium, 
2004. Proceedings. 18th International. IEEE, 2004.

´ An m-port n-tree: 
´ Height is (n+1)
´ 2(m/2)n processing nodes 
´ (2n − 1)(m/2)n−1 m-port switches 

´ Routing has two separate phases:
´ Common root at LCA 

(lowest common ancestor)

´ Valiant, ECMP, MLID

´ Examples: Stampede
´ 6400 nodes

´ 56 Gb/s Mellanox switches

´ 0.7 us uplink/downlink latency 



FDR Infiniband Validation
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´ Mini-app MPI traces:
´ Trace generated when running mini-apps on 

NERSC Hopper (Cray XE06 ) with <=1024 cores

´ Trace contains information of the MPI calls 
(including timing, source/destination ranks, data 
size, …)

´ For this experiment, we use:
´ LULESH mini-app from ExMatEx

´ Approximates hydro-dynamic model and 
solves Sedov blast wave problem  

´ 64 MPI processes

´ Run trace for each MPI rank:
´ Start MPI call at exactly same time indicated in 

trace file

´ Store completion time of MPI call

´ Compare it with the completion time in trace file
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Trace Driven Simulation



Case Study: SN Application Proxy 
´ SNAP is “mini-app” for PARTISN
´ PARTISN is code for solving radiation transport equation for neutron 

and gamma transport
´ Structured spatial mesh (“cells”) 
´ Multigroup energy treatment (“groups”) 
´ Discrete ordinates over angular domain (“directions”)

´ Finite difference time discretization (“time steps”) 
´ Scattering integrals approximated with expansion function of finite number 

of terms (“angular moments”) 

´ Outer/Inner solution strategy 
´ Outer iterations resolve group-to-group couplings 

´ Inner iterations solve transport equation for each group, over all cells, along 
all angles, each time step -> mesh sweeps 
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Application Models
´ Stylized version of actual applications

´ Focus on loop structures, important 
numerical kernels

´ Use MPI to facilitate communication

´ Use node model to compute time:
´ Hardware configuration based on clock-

speed, cache-level access times, memory 
bandwidth, etc. 

´ Input is a task-list that consists of a set of commands to be executed by the hardware, 
including, for example, the number of integer operations, the number of floating-point 
operations, the number of memory accesses, etc. 

´ Predict the execution time for retrieving data from memory, performing ALU 
operations, and storing results 
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A 2-D illustration of the parallel wavefront solution technique



Serial validation testing: 500 job test suite 

A suite of 500 SNAP and SNAPSim jobs, varying the number of spatial cells, the number of angular 
directions per octant, the number of energy groups, and the number of angular moments for particle 
scattering approximation. Changing them has effects on memory hierarchy and parallelism. 
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Strong Scaling Experiments27
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Conclusion
´ Building a full HPC performance prediction model

´ Part of codesign process to test/improve code

´ Proper abstractions to simplify performance prediction problem

´ PPT – Performance Prediction Toolkit
´ Interconnection network models (torus, dragonfly, fat-tree) 

´ Validation (throughput, latency, trace-driven, applications)
´ Application modeling: SNAP
´ Future work:

´ Large-scale performance scaling studies

´ More applications
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