
Scalable Interconnection
Network Models for Rapid
Performance Prediction of
HPC Applications
Kishwar Ahmed, Jason Liu, Florida International University, USA
Stephan Eidenbenz, Joe Zerr, Los Alamos National Laboratory, USA

18th IEEE Int’l Conf. on High Performance Computing and Communications (HPCC’16)
December 12-14, 2016 ♦ Sydney Australia

Outline

´ Motivation and Related Work

´ Performance Prediction Toolkit (PPT)
´ Interconnect Models and Validation
´ SNAP Performance Study

´ Conclusion

2

Motivation: HPC Architecture Is Changing Rapidly

´ End of processor scaling leads to novel architectural design
´ Changes can be transitional and disruptive

´ HPC software adaptation is a constant theme:
´ No code is left behind: must guarantee good performance
´ Need high-skilled software architects and computational physicists

´ New apps: big data analytics

´ Traditional methods are insufficient
´ Middleware libraries, code instrumentation, mini-apps…

´ Need modeling & simulation of large-scale HPC systems and
applications
´ And the systems are getting larger (exascale is around the corner)

3

Related Work: HPC Simulations
´ Full system simulators:

´ Simics, SimpleScalar, GEM5, COTSon, PTLsim, Asim

´ Analytical tools:
´ TAU, Vampir, HPCToolkit, Paraver, PACE, ASPEN, Palm, GROPHECY

´ Processor/core simulators: McSimA+, Zsim, Manifold
´ Memory system simulators (DRAM, NVM, Cache):

´ DRAMSim, USIMM, DrSim, Ramulator, NVMain

´ NoC simulators: BookSim, GARNET, DARSIM, HORNET, TOPAZ,
DNOC

´ FPGA-based simulators: Ramp Gold, HAsim, DART, Arete
´ Large-scale HPC simulators: BigSim, xSim, SST, CODES

4

Related Work: Interconnect Models
´ BigSim (UIUC): for performance prediction of large-scale parallel

machines (with relatively simple interconnect models),
implemented in Charm++ and MPI, shown to scale up to 64K ranks

´ xSim (ORNL): scale to128M MPI ranks using PDES with lightweight
threads, include various interconnect topologies (high-level
models, e.g., network congestion omitted)

´ SST and SST Macro (SNL): a comprehensive simulation framework,
separate implementation, one intended with cycle-level accuracy
and the other at coarser level for scale

´ CODES (ANL): focused on storage systems, built on ROSS using
reverse computation simulation that scales well

5

How about Full-Scale Cycle-Accurate Simulation of
HPC Systems and Applications?

´ It is unrealistic
´ Extremely high computational and spatial demand
´ Accurate models only limited to certain components and timescale

´ And it is unnecessary
´ Modeling uncertainties greater than errors from cycle-accurate

models
´Languages, compilers, libraries, operating systems, …

´System cross traffic

´ Design uncertainties defy specificity of cycle-accurate models

6

“All models are wrong but some are useful”
´ Managing expectations:

´ Ask what-if questions
´ Evaluate alternative designs

´ Explore parameter space

´ Will models ever catch up with
real-system refresh?
´ As valuable tools for prototyping new systems, new

algorithms, new applications?

George Box (1919-2013)

7

Need tools for fast and accurate performance prediction
à consider tradeoff

enough

Modeling via Selective Refinement

´ Maintain modeling scalability for large, complex systems
´ We are interested in performance of parallel applications

(physics code) running on petascale and exascale systems
´ Having full-scale models at finest granularity is both unrealistic and

unnecessary

´ To find the “right” level of modeling details (just enough to
answer the research questions) is an iterative process:
① Start from coarse-level models
② Gather experiment results
③ Identify components as potential performance bottlenecks
④ Replace those components by plugging in more refined models

⑤ Go to #2 until satisfaction

8

Our Goals for Rapid Performance Prediction

´ Easy integration with selective models of varying abstractions

´ Easy integration with applications (computation physics code)

´ Short development cycle

´ Performance and scale

Performance Prediction Toolkit (PPT)
´ Make it simple, fast, and most of all useful

´ Designed to allow rapid assessment and performance prediction of large-scale
scientific applications on existing and future high-performance computing platforms.

´ PPT is a library of models of computational physics applications, middleware, and
hardware that allows users to predict execution time by running stylized pseudo-
code implementations of physics applications.

´ “Scalable Codesign Performance Prediction for Computational
Physics” project
´ Simian – parallel discrete-event simulation engine

´ Configurable hardware models: clusters, compute nodes, processes/cores,
accelerators (GPU), interconnect, parallel file systems

´ Application library: benchmark applications (PolyBenchSim, ParboilSim), production
applications (SNAPSim, SPHSim, SpecTADSim)

´ Data: application instrument data (PolyBench, SNAP, SPH, CloverLeaf), hardware
specs data (Mustang, Haswell, IvyBridge, SandyBridge, Vortex)

10

Simian: PDES using Interpreted Languages
´ Open source, general purpose parallel

discrete-event library
´ Independent implementation in three

interpreted languages: Python, Lua, Javascript
´ Minimalistic design: LOC=500 with 8 common

methods (python implementation)
´ Simulation code can be Just-In-Time (JIT)

compiled to achieve very competitive event-
rates, even outperforming C++ implementation
in some cases

´ Support process-oriented world view (using
Python greenlets and LUA coroutines)

SimianLua(SimianPie(

Engine,(En.ty(
Python(Classes(

Engine,(En.ty(Lua(
Classes(

Greenlet(Processes(
(lightweight(threads)(

Corou*ne(Processes(
(lightweight(threads)(

MPI(C(Libraries((Op.onal;(either(MPICH2(or(OpenMPI)(

User(Model(
(Python)(

User(Model(
(Lua)(

Desktop(or(Distributed(Cluster(

11

Interconnection Network Models
´ Common interconnect topologies

´ Torus (Gemini, Blue Gene/Q)
´ Dragonfly (Aries)

´ Fat Tree (Infiniband)

´ Distinction from previous approaches:
´ Emphasis on production systems

´Cielo, Darter, Edison, Hopper, Mira,
Sequoia, Stampede, Titan, Vulcan, …

´ Packet-level as opposed to phit-level
´For performance and scale (speed advantage in several orders of magnitude,

allow for full scale models, sufficient accuracy)

´ Seamlessly integrated with MPI

12

MPI Model
´ MPI uses Fast Memory Access (FMA) for message passing

´ FMA allows a maximum of 64 bytes of data transfer for each network
transaction

´ Larger messages must be broken down into individual 64-byte transactions

´ Messaging are performed as either GET or PUT operations (depending
on the size of the message)

´ A PUT operation initiates data flow from the source to the target node.
When a packet reaches destination, a response from the destination is
returned to the source
´ A PUT message consists of a 14-phit request packet (each phit is 24 bits)

´ Each request packet is followed by a 1-phit response packet (3 bytes) from
destination to source

´ A GET transaction consists of a 3-phit request packet (9 bytes), followed
by a 12-phit response packet (36 bytes) with 64 bytes of data

13

Integrated MPI Model
´ Developed based on Simian (entities,

processes, services)

´ Include all common MPI functions
´ Simplistic implementation

´ Point-to-point and collective operations

´ Blocking and non-blocking operations

´ Sub-communicators and sub-groups

´ Process-oriented approach
´ Can easily integrate with most

application models

´ Packet-oriented model
´ Large messages are broken down into

packets (say, 64B)

´ Reliable data transfer

14

MPI Example15

Hardware Configuration

MPI application

Run MPI

MPI Example

16

3D Torus – Cray’s Gemini Interconnect17

´3D torus direct topology
´Each building block:

´2 compute nodes
´10 torus connections:
±X*2, ±Y, ±Z*2

´Examples: Jaguar, Hopper,
Cielo, …

Gemini Validation

 0

 1

 2

 3

 4

 5

 6

 7

 8 32 128 512 2K 8K 32K

T
h
ro

u
g
h
p
u
t
(G

b
yt

e
s/

se
c)

Data Size (bytes)

FMA Put Throughput (Empirical vs. Simulation)

empirical, PPN=4
empirical, PPN=2
empirical, PPN=1
simulation, PPN=4
simulation, PPN=2
simulation, PPN=1

Gemini FMA put
throughput (as
reported in [2])
versus simulated
throughput as a
function of transfer
size for 1, 2, and 4
processes per node.

18

Dragonfly - Cray’s Aries Interconnect19

´3-tier topology:
1. Node-router connection
2. Intra-group connection

(local link arrangement)
3. Inter-group connection

(global link arrangement)
´Routing: MIN and VAL (UGAL)
´Examples: Trinity, …

Aries Validation

 0

 2

 4

 6

 8

 10

 12

 14

 64 256 1K 4K 16K 64K 256K 1024K

Th
ro

ug
hp

ut
 (G

by
te

s/
se

c)

Data Size (bytes)

Aries MPI Throughput (Empirical vs. Simulation)

simulation (pingpong)
empirical (pingpong)
simulation (unidirectional)
empirical (unidirectional)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 8 16 32 64 128 256 512 1024

La
ten

cy
 (m

icr
os

ec
on

d)

Data Size (bytes)

Aries MPI Latency (Empirical vs. Simulation)

simulation
empirical

20

 0

 10

 20

 30

 40

 50

 60

 70

 4 8 16 32 64 128 256 512 1K 2K

Tim
e (

mi
cro

se
co

nd
)

Data Size (bytes)

Allreduce Time (Empirical vs. Simulation)

simulation
empirical

Fat-tree FDR Infiniband21

A 4-port 3-tree Fat-tree
Lin, Xuan-Yi, Yeh-Ching Chung, and Tai-Yi Huang. "A multiple LID routing scheme for
fat-tree-based InfiniBand networks." Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International. IEEE, 2004.

´ An m-port n-tree:
´ Height is (n+1)
´ 2(m/2)n processing nodes
´ (2n − 1)(m/2)n−1 m-port switches

´ Routing has two separate phases:
´ Common root at LCA

(lowest common ancestor)

´ Valiant, ECMP, MLID

´ Examples: Stampede
´ 6400 nodes

´ 56 Gb/s Mellanox switches

´ 0.7 us uplink/downlink latency

FDR Infiniband Validation

 0
 1000
 2000
 3000
 4000
 5000
 6000

500 1000 2000 4000 8000A
ve

ra
ge

 L
at

en
cy

 (m
ic

ro
se

co
nd

)

Number of Messages

Fat-tree Latency (Nearest Neighbor)

Emulab
Simulation
FatTreeSim

 0
 1000
 2000
 3000
 4000
 5000
 6000

500 1000 2000 4000 8000A
ve

ra
ge

 L
at

en
cy

 (m
ic

ro
se

co
nd

)

Number of Messages

Fat-tree Latency (Random)

Emulab
Simulation
FatTreeSim

22

´ Mini-app MPI traces:
´ Trace generated when running mini-apps on

NERSC Hopper (Cray XE06) with <=1024 cores

´ Trace contains information of the MPI calls
(including timing, source/destination ranks, data
size, …)

´ For this experiment, we use:
´ LULESH mini-app from ExMatEx

´ Approximates hydro-dynamic model and
solves Sedov blast wave problem

´ 64 MPI processes

´ Run trace for each MPI rank:
´ Start MPI call at exactly same time indicated in

trace file

´ Store completion time of MPI call

´ Compare it with the completion time in trace file

23

Trace Driven Simulation

Case Study: SN Application Proxy
´ SNAP is “mini-app” for PARTISN
´ PARTISN is code for solving radiation transport equation for neutron

and gamma transport
´ Structured spatial mesh (“cells”)
´ Multigroup energy treatment (“groups”)
´ Discrete ordinates over angular domain (“directions”)

´ Finite difference time discretization (“time steps”)
´ Scattering integrals approximated with expansion function of finite number

of terms (“angular moments”)

´ Outer/Inner solution strategy
´ Outer iterations resolve group-to-group couplings

´ Inner iterations solve transport equation for each group, over all cells, along
all angles, each time step -> mesh sweeps

24

Application Models
´ Stylized version of actual applications

´ Focus on loop structures, important
numerical kernels

´ Use MPI to facilitate communication

´ Use node model to compute time:
´ Hardware configuration based on clock-

speed, cache-level access times, memory
bandwidth, etc.

´ Input is a task-list that consists of a set of commands to be executed by the hardware,
including, for example, the number of integer operations, the number of floating-point
operations, the number of memory accesses, etc.

´ Predict the execution time for retrieving data from memory, performing ALU
operations, and storing results

25

A 2-D illustration of the parallel wavefront solution technique

Serial validation testing: 500 job test suite

A suite of 500 SNAP and SNAPSim jobs, varying the number of spatial cells, the number of angular
directions per octant, the number of energy groups, and the number of angular moments for particle
scattering approximation. Changing them has effects on memory hierarchy and parallelism.

26

Strong Scaling Experiments27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
d)

Processes

Edison Strong Scaling Study #1

Predicted (SNAPSim)
Measured (SNAP)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 200 400 600 800 1000 1200 1400 1600
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

d)

Processes

Edison Strong Scaling Study #2

Predicted (SNAPSim)
Measured (SNAP)

NERSC’s Edison supercomputer, which is Cray XC30 system with Aries interconnect (dragonfly). Each node
has two sockets, each with 12 Intel Ivy Bridge cores and 32 GB of main memory.

32 × 32 × 48 Spatial Mesh 192
Angles, 8 Energy Groups

64×32×48 Spatial Mesh
384 Angles, 42 Energy Groups

0 4800 9600 14400 19200 24000 28800 33600 38400 0 4800 9600 14400 19200 24000 28800 33600 38400
processors

cores

Conclusion
´ Building a full HPC performance prediction model

´ Part of codesign process to test/improve code

´ Proper abstractions to simplify performance prediction problem

´ PPT – Performance Prediction Toolkit
´ Interconnection network models (torus, dragonfly, fat-tree)

´ Validation (throughput, latency, trace-driven, applications)
´ Application modeling: SNAP
´ Future work:

´ Large-scale performance scaling studies

´ More applications

28

Thank you

´ Acknowledgments:

29

