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Problem

Summary of Contribution

• 15 datasets – 9 binary class, 6 Multi class
• Base classifier: Random Forest
• Evaluation parameters

• Accuracy, Precision, Recall, F1 Score, and Area Under Curve (AUC) 
• Work compared

• Recursive Feature Elimination (RFE)[1] and other works [2, 3, 4, 5, 6, 7, 8]

Experiment

• Proposed hybrid method utilizes the advantages of both filter and wrapper 
• No constraint for the user to input the number of features required as in RFE
• NMI as a metric to rank the features after clustering by Mini-Batch K-Means

• Mini-Batch k-mean is faster than K-mean

Conclusions

• Propose Hybrid Feature Selection methods 
• Method 1: MiniBatch K-Means Normalized Mutual Information Feature 

Inclusion (KNFI)
• Method 2: MiniBatch K-Means Normalized Mutual Information least ranked 

Feature Exclusion (KNFE)

Our Approach

Results – Binary Class
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• To find optimized feature subset
• Literature: Existing methods have their own performance limitations

• 2 phase Hybrid Feature Selection methods
• Combination of filter-wrapper approach

• Feature ranking function based on the filter approach
• Cluster the features based upon the total classes in the dataset
• Cluster quality – Normal Mutual Information score between 0 to 1
• Higher the rank score better the classification

• Selection of optimal features based upon the rankings
• Feature Inclusion (KNFI) – Highest ranked feature considered initially
• Least Ranked Feature Exclusion (KNFE) – initially, all features and 

classification accuracy are considered and then elimination begins
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Results – Multi Class

Results – Other Works
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