

Computing & Information Sciences

MINI-BATCH NORMALIZED MUTUAL INFORMATION: **A HYBRID FEATURE SELECTION METHOD**

Thejas G. S.¹, S. R. Joshi², S. S. Iyengar¹, N. R. Sunitha², Prajwal Badrinath¹ ¹Florida International University, ²Siddaganga Institute of Technology, India

Problem

- To find optimized feature subset
- Literature: Existing methods have their own performance limitations

Method	Ftr.	Acc	AUC	F1	
AF	10	98.540	98.113	98.53	
KNFI	4	97.810	97.517	97.81	Breast Cancer Dataset
RFE	4	94.890	93.744	94.84	
KNFE	-3	98.540	98.113	98.53	

Summary of Contribution

- Propose Hybrid Feature Selection methods
 - Method 1: MiniBatch K-Means Normalized Mutual Information Feature Inclusion (KNFI)

Results – Multi Class

Method	Ftr.	Acc	F1
\mathbf{AF}	43	89.326	88.87
KNFI	16	90.107	88.88
\mathbf{RFE}	16	89.356	89.02
KNFE	-18	89.591	89.02

Method	Ftr.	Acc	F1
AF	4	96.666	96.67
IZMET	0	00.0000	00.00

• Method 2: MiniBatch K-Means Normalized Mutual Information least ranked Feature Exclusion (KNFE)

Our Approach

- 2 phase Hybrid Feature Selection methods
 - Combination of filter-wrapper approach
 - Feature ranking function based on the filter approach
 - Cluster the features based upon the total classes in the dataset
 - Cluster quality Normal Mutual Information score between 0 to 1
 - Higher the rank score better the classification
 - Selection of optimal features based upon the rankings
 - Feature Inclusion (KNFI) Highest ranked feature considered initially
 - Least Ranked Feature Exclusion (KNFE) initially, all features and classification accuracy are considered and then elimination begins

Experiment

- 15 datasets 9 binary class, 6 Multi class
- Base classifier: Random Forest
- Evaluation parameters
- Accuracy, Precision, Recall, F1 Score, and Area Under Curve (AUC) Work compared

NINFI 99.9999 99.99 RFE 99.99999.999 $\mathbf{2}$ 99.999KNFE 99.999-4

UNSW NB15 Dataset

Method	Ftr.	Acc	F1
AF	56	33.333	37.78
KNFI	3	66.666	68.25
RFE	3	50.00	52.78
KNFE	-14	66.666	68.25

Lung Cancer Dataset

Method	Ftr.	Acc	F1
AF	18	86.66	85.19
KNFI	2	90.00	89.78
RFE	2	76.66	80.00
KNFE	-2	86.66	75.17

Iris Dataset

	Method	Ftr.	Acc	F1
Γ	\mathbf{AF}	13	41.667	34.60
	KNFI	4	56.667	51.53
	RFE	4	43.333	36.71
	KNFE	-11	51.667	40.90

Heart Disease Dataset

Method	Ftr.	Acc	F1
AF	8	24.521	22.86
KNFI	1	21.650	20.27
RFE	1	17.344	17.14
KNFE	0	25.239	23.61

Lymphography Dataset

Abalone Dataset

Results – Other Works

Method	# Ftr.	F1	\mathbf{RC}	\mathbf{Pr}	Acc
Venkatesh et al.[3]	15	95.09	94.65	95.70	95.28
HGEFS [2]	n.a.	n.a.	n.a.	n.a	91.33
FSFOA [7]	n.a.	n.a.	n.a.	n.a	95.12
LINEI	6	0714	07 18	07.90	07 18

Recursive Feature Elimination (RFE)[1] and other works [2, 3, 4, 5, 6, 7, 8]

Results – Binary Class

Method	\mathbf{Ftr}	Acc	AUC	F1	Method
AF	43	99.93	99.46	99.93	AF
KNFI	17	99.963	99.614	99.96	KNFI
RFE	17	99.960	99.612	99.96	RFE
KNFE	-6	99.944	99.96	99.94	KNFE

$\Lambda ethod$	Ftr.	Acc	AUC	F1
AF	9	99.9179	99.9179	99.92
KNFI	4	99.919	99.919	99.92
RFE	4	99.919	99.919	99.92
KNFE	0	99.9179	99.917	99.92

UNSW NB15 Dataset

Talking Dataset Version 2

Method	\mathbf{Ftr}	Acc	AUC	F1
AF	34	92.96	90.91	92.84
KNFI	6	97.18	95.23	97.14
RFE	6	91.54	7.92	91.55
KNFE	-7	95.77	94.238	95.74

83.4375

83.075

83.381

Method	Ftr.	Acc	AUC	F1
AF	57	98.04	97.69	98.04
KNFI	15	97.82	97.52	97.82
RFE	15	97.285	96.69	97.27
KNFE	-3	98.58	98.301	98.93
pambase Dataset				

Ionosphere Dataset

Method

 \mathbf{AF}

KNFI

 \mathbf{RFE}

KNFE

Acc	AUC	F1	[Me
83.029	54.235	77.89		

53.283

53.013

52.456

77.89

77.63

77.36

Method	Ftr.	Acc	AUC	F1
\mathbf{AF}	60	92.86	93.05	92.88
KNFI	3	95.24	95.138	95.24
RFE	3	88.09	88.88	88.16
KNFE	-9	97.62	97.91	97.63

KINFI	0	97.14	97.10	91.29	97.10
KNFE	-7	95.74	95.77	95.76	95.77

Comparisons of Ionosphere data with Previous Studies

Ftr. selection method	# features	accuracy
GAMIFS[6]	3	83.50
NMIFS[6]	3	75.8
MIFS[4]	3	78.4
MIFS-U[5]	3	81.2
OFS-MI [8]	3	78.4
KNFE	3	84.15
KNFI	15	97.82
KNFE(MAX)	54	98.59

Comparisons for Spambase dataset with previous studies

Ftr. selection method	# features	accuracy
NMIFS[6]	15	86.73
$MIFS(\beta=0.5)[4]$	15	85.96
MIFS-U($\beta = 0.5$)[5]	15	84.04
HGEFS[2]	N.A.	83.00
FSFOA[7]	N.A	86.98
KNFE	15	92.85
KNFI	3	95.24
KNFE(MAX)	51	97.62

Comparisons for Sonar dataset with previous studies

Avazu Dataset

Sonar Dataset

Method	Ftr.	Acc	AUC	F1
AF	8	95.127	91.672	95.08
KNFI	6	94.252	90.434	94.14
RFE	6	94.784	91.059	94.67
KNFE	0	95.20	91.72	95.11

Method	Ftr.	Acc	AUC	F1
\mathbf{AF}	39	73.545	62.386	70.29
KNFI	3	70.205	57.725	65.85
RFE	3	70.268	55.902	63.85
KNFE	-5	73.545	62.45	70.33

Talking dataset Version 1

Ftr.

25

Criteo Dataset

Conclusions

- Proposed hybrid method utilizes the advantages of both filter and wrapper
- No constraint for the user to input the number of features required as in RFE
- NMI as a metric to rank the features after clustering by Mini-Batch K-Means \bullet
 - Mini-Batch k-mean is faster than K-mean

©2019. Part of work 2019. Reprinted, with permission, from G. S. Thejas, et al., Mini-Batch Normalized Mutual Information: A Hybrid Feature Selection Method, in IEEE Access, vol. 7, pp. 116875-116885, 2019. doi: 10.1109/ACCESS.2019.2936346 https://github.com/thejasgs

Acknowledgement

This work was supported by the Florida International University Graduate School Dissertation Year Fellowship Award received by the author G. S. Thejas.

References

- Fabian Pedregosa, Ga el Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning research, 12(Oct):2825–2830, 2011.
- 2. X. Xue, M. Yao, and Z. Wu, "A novel ensemble-based wrapper method for feature selection using extreme learning machine and genetic algorithm," Knowledge and Information Systems, vol. 57, no. 2, pp. 389–412, 2018.
- B. Venkatesh and J. Anuradha, "A hybrid feature selection approach for handling a high-dimensional data," in Innovations in Computer Science and Engineering. Springer, 2019, pp. 365–373.
- 4. R. Battiti, "Using mutual information for selecting features in supervised neural net learning," IEEE Transactions on neural networks, vol. 5, no. 4, pp. 537–550, 1994.
- 5. N. Kwak and C.-H. Choi, "Input feature selection for classification problems," IEEE transactions on neural networks, vol. 13, no. 1, pp. 143–159, 2002.
- 6. P. A. Estévez, M. Tesmer, C. A. Perez, and J. M. Zurada, "Normalized mutual information feature selection," IEEE Transactions on Neural Networks, vol. 20, no. 2, pp. 189–201, 2009.
- 7. Manizheh Ghaemi and Mohammad-Reza Feizi-Derakhshi. Feature selection using forest optimization algorithm. Pattern Recognition , 60:121– 129, 2016.
- T. W.S. Chow and D. Huang. Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information. Trans. Neur. Netw., 16(1):213-224, January 2005.