GPU-Assisted Hybrid Network Traffic Model

Jason Liu

Florida International University

Miami, Florida, USA
liux@cis.fiu.edu

Zhihui Du
Tsinghua University
Beijing, China
duzh@tsinghua.edu.cn

ABSTRACT

Large-scale network simulation imposes extremely high com-
puting demand. While parallel processing techniques allows
network simulation to scale up and benefit from contempo-
rary high-end computing platforms, multi-resolutional mod-
eling techniques, which differentiate network traffic repre-
sentations in network models, can substantially reduce the
computational requirement. In this paper, we present a
novel method for offloading computationally intensive bulk
traffic calculations to the background onto GPU, while leav-
ing CPU to simulate detailed network transactions in the
foreground. We present a hybrid traffic model that combines
the foreground packet-oriented discrete-event simulation on
CPU with the background fluid-based numerical calculations
on GPU. In particular, we present several optimizations to
efficiently integrate packet and fluid flows in simulation with
overlapping computations on CPU and GPU. These opti-
mizations exploit the lookahead inherent to the fluid equa-
tions, and take advantage of batch runs with fix-up compu-
tation and on-demand prefetching to reduce the frequency of
interactions between CPU and GPU. Experiments show that
our GPU-assisted hybrid traffic model can achieve substan-
tial performance improvement over the CPU-only approach,
while still maintaining good accuracy.

Categories and Subject Descriptors

C.4 [Performance of Systems|: Modeling Techniques;
1.6.3 [Simulation and Modeling]: Applications

Keywords

GPU, network simulation, fluid model

1. INTRODUCTION

Simulation is an effective method for studying network
protocols and applications, capable of capturing detailed op-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

SIGSIM-PADS’ 14, May 18-21, 2014, Denver, CO, USA.

Copyright 2014 ACM 978-1-4503-2794-7/14/05 ...$15.00.
http://dx.doi.org/10.1145/2601381.2601382.

63

Yuan Liu
Tsinghua University
Beijing, China
liuy139@gmail.com

Ting Li

Florida International University

Miami, Florida, USA
tli001@cis.fiu.edu

erations of a complex network, especially the cross-layer in-
teroperation of various network protocols and components
that are difficult to reproduce in real network testbeds. Sim-
ulation, once validated, can be especially cost effective for
studying new network designs and services by offering con-
trolled, diverse, and yet reasonably realistic network scenar-
ios before the actual deployment.

The computational requirement of simulating large-scale
network can be extremely high. Consider an example of
simulating the core network of a major US Internet service
provider, in this case, AS 7018 from the RocketFuel dataset,
which consists of about 12,000 routers and 15,000 links [12].
Assuming all links are gigabit connections and assuming the
average packet size is 500 bytes, in order to simulate this
network with a mere 10% utilization, we can have a back-of-
an-envelop calculation which shows that the simulator would
need to process on average about 375 million packet events
per second. (A packet event is defined as a simulation event
representing a packet either arriving at or departing from
a host or a router, and can be considered as the unit of
simulation workload.) To meet with such computational
demand, there are two general approaches.

In one approach we can use parallel simulation to har-
ness the collective computing power of parallel machines [4].
In this case a large network is partitioned among the avail-
able processors and cores; each submodel is a logical process
that maintains its own event list and simulation clock, and
can run on a separate processor. Each logical process must
process local simulation events independently in timestamp
order, and synchronize and communicate with other logi-
cal processes via timestamped messages. Several parallel
network simulators (e.g., [3,32,40]) have demonstrated the
potential of running large network models on massively par-
allel computers.

In another approach we can increase the level of abstrac-
tion in order to reduce the computational demand of a large-
scale network simulation. Fluid traffic models provide a
first-order approximation of the aggregate network behav-
ior by capturing the flow rates rather than individual pack-
ets. A discrete-event formulation of a fluid flow can describe
the changes in the flow rate as the flow traverses the net-
work links and competes for network resources with other
traffic [19]. Alternatively, one can use differential equations
to represent the behavior of persistent TCP flows and their
effect on the network queue length [16]. These differential
equations can be numerically solved with efficiency. In both

cases the fluid models can demonstratively achieve a speedup
over packet-oriented simulation by as much as three orders
of magnitude while maintaining good accuracy.

This gives rise to an important distinction between the
foreground and background traffic. The foreground traffic
consists of detailed transactions of the network protocols
and applications that we intend to study and therefore need
to be modeled with high fidelity. The background traffic
is the stochastic processes that govern the behavior of the
bulk of the network traffic that occupies the network links.
The background traffic causes the characteristic fluctuations
of the network queues and therefore affects the packet de-
lays and losses of the foreground traffic. Since the back-
ground traffic does not require significant accuracy, we can
model the background traffic as fluid flows. Previously we
developed a hybrid network traffic model that integrates the
packet-oriented foreground traffic, which is simulated using
discrete-event simulation, and the fluid-based background
traffic, which is described by a set of differential equations
and solved numerically using a time-stepped approach [13].

Once a specialized processing unit dedicated only for graph-
ics rendering, the Graphic Processing Unit (GPU) has now
become an important massively parallel computing plat-
form, suitable for high-performance high-throughput data
parallel computations. Currently the performance gap be-
tween GPU and CPU is roughly 10x, both in the processing
rate and the main memory bandwidth. Such a gap is ex-
pected to widen in the next decade. Nowadays, GPU is
commonly available among workstations; because of its low
cost performance ratio and energy efficiency, GPU is already
making regular appearances in high-profile enterprise sys-
tems and supercomputers. For example, according to the
November 2013 list of the top 500 supercomputers [36], al-
though less than 10% of the current supercomputer systems
come with GPU, statistics show that nearly one third of
the overall performance of these supercomputers has been
brought by GPU acceleration.

In this paper, we present an extension to the hybrid net-
work traffic model, which offloads the numerically intensive
background traffic calculations to GPU. We propose an in-
tegration scheme that can overlap the CPU-based discrete-
event simulation of the foreground network packets and the
GPU-based differential equation solver for the background
fluid dynamics. We describe a novel mechanism that can
minimize the effect of inherent communication latencies be-
tween CPU and GPU. Our work takes advantage of the GPU
capabilities by moving the computationally intensive back-
ground traffic calculations to GPU, so that CPU can con-
centrate on simulating the detailed transactions of network
protocols and applications.

The contributions of this paper can be summarized in two
folds: (1) We present a hybrid traffic model that cleanly
separates packet-oriented foreground traffic simulation that
executes on CPU and the fluid-based background traffic cal-
culation that executes on GPU; (2) We propose a set of
optimization algorithms for overlapping asynchronous CPU
and GPU computations, exploiting the lookahead informa-
tion in the fluid calculations, and using batch runs and as-
sociated fix-up computations to reduce frequent interactions
between CPU and GPU. Extensive experiments for validat-
ing the GPU-assisted hybrid traffic model using controlled
network scenarios, and demonstrate significant performance
improvements (as much as 25x) using large network scenar-

64

ios. In this aspect, our work sets the stage for massive-scale
network simulation with realistic traffic behavior on hybrid
supercomputing platforms with GPU acceleration.

The rest of the paper is organized as follows. Section 2
reviews the existing work in network traffic modeling and
GPU-based simulation and modeling techniques. Section 3
describes the hybrid traffic model and presents the basic
method for integrating the packet-oriented simulation on
CPU and the fluid-based traffic calculation on GPU. Sec-
tion 4 describes the optimization techniques that can ef-
ficiently overlap CPU and GPU computations and reduce
communication overhead between CPU and GPU. Section 5
presents our validation and performance studies. Section 6
concludes the paper and outlines future work.

2. BACKGROUND

In this section we present an overview of fluid network
traffic models. We focus on the integration schemes from
which we develop our GPU-based solution. We also describe
existing work on GPU-based simulation and modeling.

2.1 Fluid Network Traffic Models

Traditional infrastructure network simulations represent
network transactions at the packet level. It is computation-
ally expensive since we use at least one simulation event
for each packet entering or leaving a network host or router.
Modeling network traffic as fluid flows can be traced back to
the idea of using packet trains by Ahn and Danzig [2]. Fluid
models need to accurately and efficiently capture flow-level
characteristics, such as the flow rate, as an approximation
of the network effect. For example, Nicol [18] used piece-
wise linear functions to represent TCP traffic flows and uses
simulation events to represent the flow rate changes as the
flows are propagated downstream. Guo et al. [7] proposed
a time-stepped approach where consecutive packets arriv-
ing at a router within a time-step are lumped together and
represented by a single flow rate. Recently Li et al. [10]
proposed a fast rate-based TCP (RTCP) traffic model that
approximates traffic flows as a series of rate windows, each
consisting of a number of packets considered to possess the
same arrival rate.

Misra et al. [17] used a set of ordinary differential equa-
tions (ODE) to represent the flow rate changes by capturing
the long-term average behavior of persistent TCP flows. Liu
et al. [16] later provided several improvements to the Misra’s
algorithm by explicitly expressing the network topological
information using a set of nonlinear time-varying ordinary
differential equations, which keep track of the time-varying
congestion window size of the fluid flows and the length of
the network queues.

These differential equations can be solved numerically us-
ing a fixed time-stepped Runge-Kutta method. This can
be achieved by having the simulator to schedule an event
periodically with a small time interval. At each step, the
differential equations are evaluated, and subsequently the
congestion window sizes and the queue lengths are updated.
To achieve better efficiency, multiple fluid flows with the
same source and destination can be consolidated into one
flow following the same congestion window trajectory.

2.2 Integration of Packet and Fluid Models

Hybrid network traffic models aim at combining the packet-
oriented foreground flows and the fluid-based background

flows within the same simulator, and as such they need to
focus on the interaction between the two types of network
flows. Discrete-event fluid models (e.g., [18]) use simulation
events to capture the moments of flow rate changes and thus
can be naturally integrated with the packet-level simulation
(e.g., [9,20,33)).

Special arrangement, however, must be made to integrate
the packet-oriented discrete-event simulation and the fluid
model based on differential equations. Gu et al. [6] presented
a method of integrating two separate networks: a fluid net-
work at the core with states represented by differential equa-
tions, and a packet network at the peripheral with network
transactions represented by discrete events. Interactions are
allowed to happen only at the network boundary: packets
entering the core network must be converted into fluid flows,
and when they leave, they must be converted back to packet
events. Zhou et al. [41] suggested an improvement. In or-
der to achieve a better response time from the ODE solver
(implemented in MATLAB), two instances of the same fluid
model are included in their system with interleaving simu-
lation clocks. Such redundant computation can effectively
double the speed of the ODE solver.

In our previous work we proposed an integration scheme
that allows mixing of fluid and packet flows at each network
queue [13]. To correctly integrate the fluid and packet mod-
els, the scheme takes into consideration the impact of fluid
flows on packet flows and vice versa. In particular, one must
calculate the aggregate arrival rate of both fluid and packet
flows at each network queue for correct queue length and
queuing delay for all fluid flows traversing a node. In doing
so, one can properly schedule the packet departure events
according to the calculated queuing occupancy.

We also proposed several techniques to improve the perfor-
mance of the hybrid model, such as using efficient data struc-
tures, caching, and dynamically varying the Runge-Kutta
time step size [15]. We also demonstrated that the hybrid
model is highly parallelizable [14]. We observed that the
time it takes to propagate fluid characteristics (such as the
accumulative delay and loss rate) along the flow paths has
a lower bound equal to the minimum link delay, according
to the governing ordinary differential equations. As such,
parallel simulation can maintain good lookahead and is thus
capable of achieving good parallel performance.

2.3 GPU-based Simulation

Modern GPUs have recently evolved beyond simply being
the graphics processing units for rasterization of 3D primi-
tives. It is common that contemporary high-end computing
systems include GPUs to accelerate computation. Over the
years, we have seen many algorithms and applications taking
advantage of GPU’s unique processing capabilities [5,23,29].
The GPU programming tools have also evolved from spe-
cific graphics languages, such as OpenGL and Cg, to more
generic parallel programming paradigms, such as CUDA [21]
and OpenCL [34].

GPU-based simulation has also become more common.
Verdesca et al. [37] used GPU to conduct line-of-sight and
route planning calculations for battlefield simulations. It
is not surprising that simulation can benefit significantly
from offloading data parallel tasks onto GPU, including for
example, N-body simulation [8,22], Monte Carlo simula-
tion [30, 38], group mobility models [28], and agent-based
models [1,27].

65

node 0 node 1 node 2 node 3

wict) Ri(t),Ai(t)
qo(d /71%\ a2t >
a0,Co a1,C1) azC2
AO(t)E]Im Do) Am)@m 1ty A2 LLLjoz0y W
flow Ly I3 \ flow
source destination

do(t),ro(t) A1) d2(t),r2(t)

Figure 1: A flow traversing two intermediate nodes.

Perumalla [26] first investigated possible alternatives for
conducting discrete event simulation (DES) on GPU. Park
and Fishwick [24] developed an application framework based
on CUDA to support fast DES. In a consequent paper [25],
they conducted an analysis of queuing network simulation
using their GPU-based application framework. More re-
cently, Li et al [11] introduced the a three-stage strategy
to realize DES on the GPU platform as a cost-efficient al-
ternative to the traditional parallel DES. Tang and Yao [35]
developed a new simulation kernel based on GPU to sup-
port DES. All the above efforts aimed at accelerating generic
discrete-event simulation on GPU. Our method described in
this paper is specific for cooperating CPU and GPU for high-
performance network traffic modeling.

In this aspect, Xu and Bagrodia [39] presented a hybrid
network simulation framework that uses GPU to carry out
certain tasks, including a GPU implementation of a fluid
TCP model [17]. Our hybrid traffic model is derived from
an improved fluid model with detailed network topological
information. To achieve better accuracy, our model also
requires fine-tuned integration between the fluid and the
packet flows, which presents unique challenges for coordi-
nating the computation carried out both on CPU and GPU.

3. HYBRID TRAFFIC MODELING

Our hybrid traffic model consists of a fluid-based back-
ground traffic model on GPU, and a discrete-event packet-
oriented foreground traffic model on CPU. We describe the
fluid model and its GPU-based implementation, and then
introduce the integration scheme that combines the GPU-
based fluid model and the CPU-based packet simulation.

3.1 Fluid Model

The input to the background fluid traffic model is a graph
that represents the network with link delays and bandwidths,
and a traffic matrix consisting of fluid flows on the network
with distinct sources and destinations as the background
traffic. In the following we first describe the set of differ-
ential equations that need to be solved on GPU. Compared
with the original fluid model [16], here we also present a sim-
plified model for drop-tail queues in addition to the Random
Early Detection (RED) queuing policy. Fig. 1 illustrates an
example with a fluid flow traversing two intermediate nodes;
it shows most of the flow variables maintained by the model.

For TCP flow i, the additive-increase and multiplicative-
decrease behavior of the TCP window size W;(t) (during the
TCP congestion avoidance stage) can be described as:

AWi(t)/dt = 1/Ri(t) — Wi(t)\i(t)/2 (1)

where R;(t) is the round-trip delay and A;(¢) is the packet
loss rate at time ¢.!

!The boundary conditions of the window size and the queue
length (shown later) are not included here in the equations
for simple exposition.

Suppose flow ¢ visits a total of n; nodes from source to
destination, where node 0 is the source and node (n; — 1)
is the destination of the flow. At each node k except the
destination node, we can calculate its queue length g¢x(t)
using the following differential equation:

dai(t)/dt = A (t)(1 — p(t)) — Ch (2)

whereA 1 (t) is the total arrival rate of all fluid flows enter-
ing the network queue, px(t) is the packet drop probability,
and Cy, is the link bandwidth. The packet drop probability
pi(t) is used specifically to model the selective packet drop-
ping mechanism in RED. For drop-tail queues, we set px(t)
to zero. For RED, it is a piece-wise linear function of the
average queue length, which can be calculated as a moving
average from the instant queue length.

The round trip time, R;(t), and the packet loss rate, A;(t),
are determined by accumulating queuing delays and packet
losses along the flow path. We use di(t) to denote the cumu-
lative delay, and r(¢) to denote the cumulative packet loss
rate of flow i arriving at the kt node, where 0 < k < n;.
At the source, both do(t) and 7o(¢) are zero.

The cumulative delay at the downstream node (k+1) can
be calculated from the value at node k:

diy1(ty) = di(t) + ar + qi(t)/Ch 3)

where t; = t+ ax + qr(t)/Ck, and ay, is the link propagation
delay between node k and node k + 1. Here, the cumulative
delay at the downstream node is calculated from the cumu-
lative delay at the previous node plus the queuing delay at
the previous node and the link’s propagation delay. Note
that the cumulative delay must consider a time lag equal to
the sum of the queuing delay and the propagation delay.
The cumulative packet loss rate for the fluid flow arriving
at the downstream node (k + 1) can be calculated from the
cumulative packet loss rate at node k£ plus all the losses

occurred at node k (also with the proper time lag). For
RED queues, this can be expressed as:
it (ty) = re(t) + A (t)px(t) (4)

where Ag(t) is the arrival rate and pg(¢) is the RED packet
drop probability at node k. For drop-tail queues, we have:

re+1(ty) = ri(t) + Ax(t) — Di(t + qi(t)/Cx) (5)

Here, Ag(t) is the arrival rate of the fluid flow and Dg(t +
qr(t)/C) is departure rate of the same flow. The difference
accounts for the loss.

At the flow source, the arrival rate is the flow send rate,
which can be calculated from the TCP congestion window
size and the round-trip delay:

Ao(t) = Wi(t)/Ri(t) (6)

Similar to [16], we allow a fluid flow to include multiple
TCP sessions having the same source and destination and
therefore following the same congestion window trajectory.
For that, we simply multiply the send rate by the number of
TCP sessions. Note that if flow ¢ is an UDP flow, we simply
set a constant send rate.

For subsequent nodes, the arrival rate is the departure
rate of the previous queue after a time lag equal to the link’s
propagation delay:

Ag1(t + ar) = Di(1) (7)

66

The departure rate at node k is determined by the ar-
rival rate after a time lag equal to the queuing delay, which
amounts to g (t)/Ck. If the total arrival rate is less than
the bandwidth, the departure rate remains the same as the
arrival rate. Otherwise, the departure rate is proportional
to the arrival rate as the bandwidth is shared among the
competing flows:

, Ar(t)(1 — pr(t
Di(ty) = { Akgtggk/f(;((t)))

A k()1 = pr(t)) < Ch
otherwise.
(8)

where t =t + qx(t)/Ck.

For simplicity, we assume the routing path is symmetrical,
and the queuing delays and packet losses are negligible for
the ACK flow from the destination traveling back to the
source. Let m; be path delay for flow 7, which is the sum of
the propagation delay of all links on the path from source
to destination. The round-trip delay can be calculated from
the cumulative delay at the flow destination:

Ri(t) = dp;—1(t — ™) + 7 9)

Similarly, the packet loss rate can also be calculated from
the cumulative packet loss rate at the flow destination:

Ai(t) = Tn,—1(t — 1) (10)

In case a flow consists of multiple TCP sessions, we need to
divide the total loss rate by the number of TCP sessions to
derive the per-session loss rate, which we use in Eqn. (1).

The above equations can be solved numerically using the
Runge-Kutta method. In general, to solve y(t) given dy(t)/dt,
and the initial value y(0) = yo, one can iteratively compute
the approximate values yi,y2, - ,yn of the actual values
y(t1),y(t2), - ,y(tn), where to = 0 and t;41 = t; + ¢ for
i=0,1,--- ,n—1. ¢ is the Runge-Kutta step size, which
is set to be at least 10x smaller than the link delay in the
implementation in order to maintain numerical accuracy.

In parallel simulation, a fluid flow may traverse multiple
sub-networks each assigned to a different processor. We use
ghost nodes to represent the next fluid nodes assigned to
remote processors. The ghost nodes communicate with the
remote processors by the underlying parallel simulation ker-
nel. The fluid nodes along the path of a fluid flow are thus
broken into multiple segments assigned to different proces-
sors and handled in a parallel fashion. There is a full dis-
cussion in [14].

3.2 GPU Implementation

We implement the Runge-Kutta method on GPU using
CUDA [21]. In CUDA, a program is composed of a large
number concurrently schedulable threads. These threads
are organized into thread blocks and dispatched onto GPU’s
parallel execution units, called Streaming Multiprocessors
(SMs), via invocation of the CUDA “kernel” functions. While
threads within the same block can synchronize using CUDA’s
__syncthreads () function, synchronization between threads
belonging to different blocks is unsupported. In this case,
one would have to split calculations into serval kernels so
that data modification by threads in one kernel are visible
to threads in subsequent kernels.

There exist data dependencies during the evaluation of
the differential equations within a Runge-Kutta step. For
example, the departure rate at the source of the fluid flow
depends on the flow send rate (as well as the queue length),

which in turn depends on the congestion window size and the
round-trip time. We split the fluid calculations into three
kernels. We make sure there is no data dependency within
each kernel; therefore, we can employ more threads and as-
sign them to multiple thread blocks for better parallelism.

The first kernel function, update_flow, designates a CUDA
thread for evaluating the congestion window size W;(-), the
round-trip time R;(-), and the packet loss rate A;(-), for
each flow i. The second kernel function, update_queue, des-
ignates a CUDA thread for calculating the queue length ¢;(+)
for each network queue [that contains fluid flows. Here, each
thread performs a gather operation to compute the total ar-
rival rate of all fluid flows entering the queue. The third
kernel function, update_hop, designates a CUDA thread for
each fluid flow at a network queue that the fluid flow tra-
verses. Each thread needs to evaluate the flow arrival rate
Ag(+), the flow departure rate Dg(-), the cumulative delay
dk(-), and the cumulative packet loss rate ri(-). At each
Runge-Kutta step, these three kernels will be invoked in
sequence. Data transfer between CPU and GPU will hap-
pen before and after the kernel invocations. It is obviously
inefficient to invoke the kernels and transfer data at such
frequency; we discuss further optimizations in Section 4.

CUDA provides users access to different types of memory.
Each thread may use registers or shared memory for fastest
access. The latter can be used to communicate with threads
within the same block. However, both types of memory
are not persistent across kernel invocations. There are also
constant memory and texture memory, but they are used for
special purposes: constant memory is used only for storing
immutable data, and texture memory requires 2D spatial
locality.

Since fluid variables, like the congestion window size W;(-)
and the cumulative packet loss rate ri(-), need to be kept
at GPU across kernel invocations, and they also need to be
accessed by threads potentially belonging to different blocks,
we use global memory, which is a large chunk of memory and
can be accessed by all threads belonging to different blocks
and across kernel invocations. Although accessing the global
memory is about 100x slower than the registers and shared
memory, it is still considered to have a higher bandwidth
than the CPU memory.

Certain fluid variables need to keep values in the simulated
future. For example, the cumulative delay di(-) in Eqn. (3)
must be able to set values at a future time after the current
queuing delay and the link propagation delay. In this case,
we allocate memory for an array to keep track of the time
series. The size of the array is bounded by the maximum
queuing delay and the link propagation delay.

3.3 Packet and Fluid Integration

The fluid background traffic calculation on GPU is in-
voked as CUDA kernel functions by CPU at each Runge-
Kutta step. However, the GPU-based fluid model only con-
siders fluid flows; these fluid flows need to be integrated
with the foreground traffic, which is represented by individ-
ual packets and simulated as discrete events on CPU.

In particular, when a packet arrives at a node, the simu-
lator needs to determine whether this packet will cause the
network queue to overflow with the given queue length cal-
culated from the background fluid model. If so, the packet
needs to be dropped. Otherwise, it is inserted into the net-
work queue and the network queue length is adjusted ac-

67

Qmax Qmax T
1 pl(t+d)
it
pl(t+8) ’
- | | ql(t+8)
v 1 | 4
; i qle+d) al®
\ \ v v y \
t x1 y1l x2 y2 x3 y3 t+d t x1 yl x2 y2 x3 t+d
Qmax _ Qmax
pl(t+8)
P2} p3} l
p1fi T p2|, ‘
T . pl(t+8) pl !)
| | o, _ Yoo y 4 I(t+5;
al® ' ' % T ! ' | al+5)
! 4 qle+s) al® | 4 4 l
v] \ v v y M
t x1 yl X2 y2 x3 t+d t x1 yl x2 y2 x3y3 t+d

Figure 2: Mixing of fluids and packets.

cordingly. The simulator also needs to schedule a packet
departure event after the queuing delay. The fluid model
needs to consider the changes to the network queue length
due to packet arrivals. The fluid model only calculates the
differences in queue length at each Runge-Kutta step (using
Eqn. 2).

Fig. 2 shows an example on how fluids and packets are
integrated. Suppose at time ¢t and t+4 (9 is the Runge-Kutta
step size), the GPU-based fluid model calculates the network
queue length ¢;(t) and ¢ (t +). The top left plot shows the
situation where the aggregate fluid arrival rate is less than
the bandwidth and therefore the queue length is decreasing.
The top right plot shows the fluid arrival is greater than the
bandwidth, and the queue length is increasing. During the
time interval, three packets of size p1, p2, and ps arrive at
the network queue at time x1, x2, and z3, respectively. The
top left plot shows that all packets are admitted into the
network queue; however, the top right plot shows that the
third packet is dropped due to queue overflow.

When a packet is inserted into the queue, we need to ad-
just the queue length. We use variable p;(z) to keep track
of the total size of packets arrived at the queue during the
interval before and including time x. We set p;(t) = 0 at the
start of the interval. If a packet is allowed to be inserted into
the queue upon its arrival at time x, the packet size will be
added to p;(x) and then the simulator will schedule a packet
departure event so that it can later simulate the delivery of
the packet to the next queue. The departure time y can be
calculated from the arrival time x and the current queuing
delay, which depends on the length of the queue (including
for both fluids and packets) and the link bandwidth C;:

y =2+ (a(z) +p(2)/C (11)

The problem is that when packets arrive during the Runge-
Kutta time interval between time ¢ and ¢+ ¢, the fluid queue
length at time ¢+ 4 is not yet available (it’s in the simulated
future). As a matter of fact, g;(¢+6) actually should depend
on both fluid and packet arrivals during the interval. In our
implementation, we approximate the queuing occupancy by
assuming the fluid queue length ¢;(-) stays constant during
the interval.

This approximation may introduce errors, which are illus-
trated in the bottom two plots in Fig. 2. The bottom left
plot shows the situation where the third packet, which is sup-
posed to be admitted, is dropped due to queue overflow. And
the bottom right plot shows the third packet is admitted,

Algorithm 1 Lock-step hybrid simulation on CPU

1: qi, pi < 0 for all network queues
2: schedule a Runge-Kutta event at time 0
: -+ // initialize other simulation variables
: While (simulation is not finished) Do
e < eventlist.getEarliestEvent()
tc < e.time // current simulation time
If (e is a Runge-Kutta event) Then
qi <= qi + pi; pi <= 0 for all network queues
copy q for all network queues CPU=-GPU
10: invoke update_flow, update_queue, update_hop
11: wait for the three kernels to complete

12: copy qi and p; for all network queues GPU=CPU

13: schedule a Runge-Kutta event at time tc + §

14: Else If (e is a packet arrival event) Then

15: u < uniform(0,1)

16: If (u< pi OR qi + pi + packet.size > Q™) Then

17: drop the packet

18: Else

19: insert packet into the queue

20: pi < pi+ packet.size

21: sc)h/edule packet departure event at time tc + (qi+
p1)/Ci

22: End If

23: Else

24: -+~ // process other simulation events

25: End If

26: End While

but in reality it should be dropped. Similarly, we assume
the packet drop probability for the REQ queue p;(:) also
stays constant during the interval. The packet drop prob-
ability is calculated from the average queue length, which
could change during the interval when the instant queue
length changes. In both cases, however, we expect the error
to be insignificant. The Runge-Kutta step size must be kept
small to maintain numerical accuracy. The differences only
occur when the network queue is about to be full. When we
keep the Runge-Kutta step size small, the chance of having
multiple packets to arrive during the interval and causing
such error cannot be significant.

The algorithm for integrating fluid flows and packet flows
is described in detail in Alg. 1. At each Runge-Kutta step,
CPU needs to copy the updated queue length of all net-
work queues to GPU global memory (at lines 8 and 9). The
CUDA kernel functions are then invoked, which calculate
the flow values of the current time, which include the con-
gestion window size, the queue length, and the cumulative
delay and packet loss rate (at lines 10 and 11). CPU then
transfers the queue length and packet drop probability from
GPU’s global memory back to CPU’s main memory (at line
12), so that it is ready for the next Runge-Kutta interval.

Upon each packet arrival, the simulator first draws a ran-
dom number from the uniform distribution between 0 and 1
(at line 15). If it’s less than p;, which means the packet is
randomly picked to be dropped according to the RED queu-
ing policy, or if the packet would cause to queue to overflow
(at line 16), the simulator drops the packet. Otherwise, the
simulator inserts the packet into the queue (at line 19), up-
dates the queue size (at line 20), and then schedules the
packet departure with the proper delay (at line 21).

Note that, in this algorithm, the invocation of the GPU
kernel functions is synchronous. CPU needs to wait for the
GPU kernel functions to complete (at line 11) before it can
continue with simulation for the next Runge-Kutta interval.
This algorithm therefore is lock-stepped: there is no overlap

68

between CPU and GPU computations. In the next section,
we describe several optimizations for CPU and GPU to per-
form their tasks asynchronously and more efficiently.

4. OPTIMIZATIONS

In the previous section, we introduce a hybrid traffic model
which performs the background fluid-based traffic calcula-
tion on GPU and the foreground packet-oriented simulation
on CPU. The algorithm is inefficient, however, due to the
strong coupling between CPU and GPU computations—at
each Runge-Kutta step, CPU has to transfer data to GPU,
wait for the kernel invocations to complete, and then trans-
fer data back from GPU, before it can continue with the
discrete-event simulation for the next interval. In this sec-
tion, we present optimizations to allow overlapping CPU and
GPU calculations with reduced synchronization frequency.

4.1 Exploiting Lookahead

A close inspection on the set of differential equations of
the fluid model reveals that the GPU threads evaluating
the equations can be made independent of one another for
a time interval larger than the Runge-Kutta step size. We
observe that the flow values at one queue does not influence
the calculation of the flow values of another queue for a
period of time no less than the propagation delay of the link
in-between.

Specifically, we see that , according to Eqn. (7), the arrival
rate at the downstream queue Axyi1(-) is only dependent
on the departure rate of the previous queue Dy(-) after a
time lag equal to the link’s propagation delay ar. Also,
in Eqns. (3), (4), and (5), we see that the the cumulative
delay di+1(-) and the cumulative packet loss rate ri41(+) at
the downstream queue are all dependent on corresponding
values at the predecessor queue after a time lag equal to the
sum of the link’s propagation delay and the queuing delay,
ak + qr(t)/C. Similarly, in Eqns. (9) and (10), the round-
trip delay R;(-) and the packet loss rate A;(-) are calculated
from the cumulative delay and the cumulative packet loss
rate, respectively, with a time lag as large as the path delay
TG

This means that the thread responsible for evaluating the
flow variables associated with a queue can run independently
from the other threads within the same time window of size
equal to the minimum propagation delay. Note that this
concept is similar to the lookahead we use for parallel simu-
lation. Lookahead is defined to be the minimum simulation
time it takes for one simulation process to affect the state
of another. With good lookahead, a process can safely pro-
cess simulation events and advance its simulation clock in
parallel with the other processes.

In this context, a simulation process is analogous to a
GPU thread. To exploit this lookahead, we still keep the
three GPU kernel functions, update_flow, update_queue,
and update_hop; however, we make the threads to evaluate
for as many as 7 number of Runge-Kutta steps at each kernel
invocation, where 7 = min{a}/J, and ¢ is the Runge-Kutta
step size. Consequently, data transfer between CPU and
GPU happens only at each kernel invocation every 74 units
of time. Given that the minimum link propagation delay
is at least 10 times larger than the Runge-Kutta step size
(for numerical stability), this optimization can significantly
reduce the overhead associated with the kernel invocations
and data transfers between CPU and GPU.

1 1 1 1 1
CPU Main T T —Lh >
| ' pl | p2 A
1 | | | |5
v : : : :
CPU Slave : “: “: “: “: >
2: 3 : 4 3 : 4 3 : 4 3 :
GPU)\ A \ A \ A A4 | >~
T T T T T
1
1

< T8 >1<— T3 >1<— T8 >< T >

Figure 3: Overlapping CPU/GPU computation.

4.2 Overlapping CPU and GPU Computations

GPU is a separate computing device and can be treated as
a co-processing unit to CPU. To improve performance, we
need to overlap CPU and GPU computations and have CPU
and GPU to perform tasks in parallel. For our hybrid traffic
model, this means we want CPU to process simulation events
associated with the foreground traffic and GPU to calculate
the background traffic, concurrently.

We solve this problem by creating a separate thread on
CPU to handle GPU kernel invocations for GPU to coast
forward for a batch of Runge-Kutta steps without further
update from CPU. As illustrated in Fig. 3, the method
maintains two threads on CPU: the main thread for pro-
cessing simulation events, and the slave thread for invoking
the GPU kernel functions. The following steps corresponds
to the numbers shown in the figure:

1. The CPU main thread schedules a Runge-Kutta batch
event periodically every B7¢ units of simulation, where
B is the batch size, 7 is determined by the looka-
head described in the previous section, and § is the
Rung-Kutta step size. When processing this event,
the main thread first check that the slave thread has
completed the previous batch run and if so, signals
the slave thread to set off a new batch run. CPU will
continue processing events until the next Runge-Kutta
batch event.

2. The CPU slave thread waits for the signal from the
main thread to start a batch run. Upon receiving this
signal, the slave thread transfers the updated queue
lengths for all network queues from CPU to GPU. It
then invokes the three GPU kernel functions in order:
update_flow, update_queue, and update_hop. Each
thread will run for 7 number of Runge-Kutta steps.

3. The CPU slave thread waits for all three GPU ker-
nels to complete and then copies the resulting fluid
queue values from GPU. The CPU main thread pro-
cesses packet arrival events (p1 and ps in the figure) us-
ing the fluid queue values of the corresponding Runge-
Kutta step, like in Alg. 1. This means that GPU may
need to run ahead of CPU by as much as 7§ time. In
other words, the CPU main thread may need to wait
for the slave thread (and the GPU) to get ahead. Syn-
chronization between the CPU main thread and slave
thread can be easily implemented using thread condi-
tional variables.

4. The CPU slave thread sets off for the next 7 number
of Runge-Kutta steps by invoking the three GPU ker-
nel functions. This step is similar to step 2, except
here it does not include data transfers from CPU to
GPU. Steps 3 and 4 alternates until GPU completes
the whole batch.

69

5. The CPU slave thread signals the main thread that
the batch run has completed, so that the main thread
can start with the next batch run.

The above method allows GPU to run the fluid model
for a batch of BT steps using the updated queue lengths
received from CPU at the beginning each batch (in step
2). The resulting fluid values (fluid queue length and drop
probability) are copied back to CPU every 7 steps. In the
next section, we introduce a fix-up computation to avoid
the accumulation of errors. In another section to follow,
we also introduce an on-demand prefetching technique to
further reduce data transfers during a batch run.

4.3 Fix-up Computation

In Section 3.3, we introduce an approximation method for
mixing fluid and packet flows within a Runge-Kutta interval.
We observe that the approximation may introduce errors
due to possible queue overflow. Here we call it an overflow
problem. We expect the overflow problem should not be
significant because of the small step size.

When we consider multiple Runge-Kutta steps for batch
runs (as detailed in the previous section), we face two other
problems. One problem is how to set the batch size B. The
fluid model on GPU only receives an update of the queue
length from CPU at the beginning of each batch run. It
then carries out the calculations for the next B7 number
of Runge-Kutta steps independent of the changes happen at
CPU. This is the same as to assume that the fluid traffic may
not be significantly influenced by the packet arrivals during
this time period. In general, the background traffic is the
dominant traffic on the network, in which case the influence
of packet flows on fluid flows is not as important as the other
way around. Setting a bigger batch size can make fluid traffic
to be less responsive to the changes in the packet flows. One
must determine whether this situation is desirable for the
simulation problem at hand, and set the batch size cognizant
of the performance and accuracy tradeoff.

The other problem we face when dealing with batch runs
is what we call an underflow problem, an example of which
is illustrated by the top plot of Fig. 4. The figure shows
the network queue size fluctuates as a function of fluid and
packet arrivals over time. For a batch run that starts at
time tp, GPU calculates the background traffic flows and
their effect on the fluid queue length, ¢(:), at time tp +
d,tp +26,--- ,tg + B7d. For packet arrivals, the simulator
accumulates the packet queue length p;(-), as shown in Alg. 1
(at line 20). The sum of fluid and packet queue lengths
determines the departure time of the arrived packet (see
Eqn. 11). The underflow problem is that this method can
gravely over-estimate the actual queue length when dealing
batch runs having multiple Runge-Kutta steps.

The error occurs at the time when the fluid queue length
gets close to zero. The fluid model calculates the queue
length, ¢;(+), according to the aggregate arrival rate and the
bandwidth (Eqn. 2). When the queue becomes empty, for
example, during the interval between tg + 2§ and tp + 36
in Fig. 4, the queue length simply stays at zero. However,
this does not affect the packet accumulations at CPU, p;(+),
which in fact should also be decreased at a rate according
to the aggregate arrival rate and the bandwidth.

We solve this problem by asking GPU to calculate the
quantity of projected reduction in queue length as if the
fluid queue were not empty during this Runge-Kutta in-

te+20 t8+30 ts+48 tB+53 tB+6d tB+70 ---

FIuid: and PacKet Flow i

| | |

| | |

i i i i

‘ ‘ : : :

Fluid Flow Only ! !
- : i ‘

Fluid and Packet Flow
! 1
-

Figure 4: Underflow and fix-up computation.

terval. Suppose the fluid queue [becomes empty or stays
empty during the interval between t and t + §; that is, when
qi(t +) = 0. We can calculate the projected reduction in
queue length for this interval as:

o) (t + 5) = max{(Cl LY (t))5 —q (t), O}

We can then obtain the cumulative projected reduction
in queue length from the beginning of the batch for each
Runge-Kutta step of the batch:

(12)

CI?'l(tB + i(5) = Z¢z(t3 + k'(S)

k=1

(13)

wheret =1,2,--- BT,

On CPU, at the beginning of each batch run, we set p;(t5)
to zero and set ¢} to tp. t! is a variable which we use to
record the time at which p; is last updated. Suppose a packet
arrives at the network queue [at time z. We can adjust the
current packet queue length p;:

pu(x) = max{pi(t}) — i1(z) + ¢u(t)), 0}

where® ;(t) (for an arbitrary time t) can be obtained using
a linear interpolation of the values at the Runge-Kutta step
boundaries, tg + id, where i = 1,2,--- , B7. After that, we
update ¢ to be z, and we can now correctly schedule the
corresponding packet departure event using Eqn. (11).

4.4 On-Demand Prefetching

Fig. 3 shows that the CPU slave thread needs to wait for
the invocation of the three GPU kernel functions to com-
plete and then copy the fluid queue values (including the
fluid queue size ¢(-), the packet drop probability pi(-), and
the cumulative projected reduction in queue size® ;(-)) from
GPU to CPU (shown as step 3). Such interaction happens
once every 7 number of Runge-Kutta time steps. In low
packet traffic situations when the packets arrive sparingly,
maintaining this level of interaction between CPU and GPU,
however, may not be necessary. For better efficiency, CPU
needs to be able to determine on demand whether to syn-
chronize with GPU, and if so, what data needs to be trans-
ferred from GPU to CPU.

Let Tcpu be the time of the fluid values required by the
CPU main thread to process a packet arrival at time t. We
set Tcpy to be the end time of its current Runge-Kutta in-
terval:

(14)

Tcpu =ts + [(tftB)/(ﬂ(s (15)

70

Similarly, we use Tgpy to indicate the time up to which
GPU has progressed. If the CPU main thread is processing
a packet arrival, it needs to determine whether GPU has
the needed fluid values ready to be used. If Tgpy is less
than Tcpy, it means the main thread must wait for GPU
to catch up. We accomplish this by using a conditional
variable to synchronize between the CPU main thread and
slave thread, which is overseeing the progress of GPU. We
let the CPU main thread block on the conditional variable
if GPU is lagging behind.

The CPU slave thread can determine whether or not to
synchronize with GPU between the kernel invocations by
choosing whether or not to wait for the completion of all
previous invoked kernels. In our implementation the CPU
slave thread can invoke the three GPU kernels consecutively
at most B times (that’s the entire batch) before it is forced
to wait for all of them to complete. When GPU is ahead of
CPU, the CPU main thread can copy the fluid values from
Tcpu to Tepu in one swoop. Prefetching data from GPU
can reduce the frequency of such data transfers and thus
improves efficiency. To facilitate that, we use a variable ¢,
to indicate the time of the fluid variables that have already
been copied to the CPU main memory.

The complete algorithm, including all optimization tech-
niques mentioned in this and previous sections, is summa-
rized in Alg. 2 and Alg. 3. Alg. 2 describes logic of the CPU
main thread and Alg. 3 describes the logic of the CPU slave
thread that manages GPU computation.

S. EXPERIMENTS

We implemented the GPU-assisted hybrid network traffic
model in our network simulator PRIME [31]. The simulator
is designed for parallel and distributed simulation of large-
scale networks. For now, the implementation of the hybrid
model allows for only sequential execution. We conducted
several experiments to validate the hybrid model and assess
its performance.

The machine we used for the experiments is a Linux work-
station equipped with an Intel i5-750 2.66 GHz CPU, 5 GB
memory, and an NVIDIA GeForce GTX 260+ graphics card.
We use GCC and CUDA compilers to compile the program
with optimization level 2.

5.1 Validation Results

To demonstrate the correctness of the GPU-assisted hy-
brid model, we use a small network model, which was de-
signed originally by Gu et al. to evaluate their hybrid model [6].
The network topology, as shown in Fig. 5, consists of only
12 nodes and 11 links. The delay and bandwidth of all links
are set to be 10 ms and 100 Mbps, respectively. There are
22 RED queues in this example. We place four flows on the
network: flow 0 and flow 1 each has 10 long-lasting TCP ses-
sions, all starting at time 0; flow 2 has 20 long-lasting TCP
sessions, also starting at time 0; flow 3 has 40 short-lived
TCP sessions, starting at 30 seconds and lasting for only 30
seconds. We set the maximum queue length to be 5 MB for
all network queues. All TCP sessions in the experiments are
assumed to be TCP Reno with a maximum window size of
128 KB.

In the first validation test, we set all flows except flow 2
to be the background fluid traffic calculated on GPU. For
flow 2, we select 0, 10, or 20 out of the 20 TCP sessions as
the foreground packet-oriented traffic and simulate them on

Algorithm 2 Async hybrid simulation: CPU main thread

Algorithm 3 Async hybrid simulation: CPU slave thread

1: qi,pi,t}, ¢ < 0 for all network queues
2: REQ <« false // whether CPU is requesting data from
GPU

3: create and run CPU slave thread
4: schedule a Runge-Kutta batch event at time 0
5: --- // initialize other simulation variables
6: While (simulation is not finished) Do
7: e < eventlist.getEarliestEvent(
8: tc < e.time // current simulation time
9: If (e is a Runge-Kutta batch event) Then
10: If (t. > 0) Then
11: wait for signal from slave thread previous batch
has completed
12: copy qi, pi, and & for all network queues
GPU=CPU
13: End If
14: Tepu, tup, 1, te <= tc; // start time of the batch
15: Tcpu <= Tepu + 6
16: update p; for all network queues using Eqn. (14)
17: a1 < qi + pi; pr < 0 for all network queues
18: signal slave thread to start a new batch
19: schedule a Runge-Kutta batch event at time t.+B7d
20: Else If (e is a packet arrival event) Then
21 Tcpu < tg + [(tc — tg)/d]0 // round up
22: If (tup < Tcpu) Then
23: If (Tcpu > Tepu) Then
24: REQ < true // main thread is requesting GPU
progress
25: wait for signal from slave thread when Tgpy >
Tcru
26: End If
27: copy qi, pi, and ®; for Tecpy < t < Tepu
GPU=CPU
28: tup <= Tgpu // time of prefetching
29: End If
30: update p; using Eqn. (14), t} < ts
31: u < uniform(0,1)
32: If (u< p OR qi + pi + packet.size > Q™) Then
33: drop the packet
34: Else
35: insert packet into the queue
36: pi < pi+ packet.size
37: sc)h/edule packet departure event at time tc+ (qi +
p1)/C
38: End If
39: Else
40: .-+ // process other simulation events
41: End If

42: End While

CPU using the detailed TCP implementation in the simu-
lator. The rest of flow 2 are fluid flows and set as part of
the background traffic calculated on GPU. In the case of 0
TCP sessions, we have a pure fluid model, which we use as
the baseline for comparison.

We fix the Runge-Kutta step size to be 0.5 ms. Therefore,
the lookahead 7 is 20 (because the minimum link delay is 10
ms and the Runge Kutta step size 0 is 0.5 ms). We start with
the batch size B = 1. Fig. 6 shows the length of the network
queue in node 4 (in the network interface connecting to node
7). We see that the queue length increases rapidly at 30 sec-
onds when flow 3 (with 40 TCP sessions) enters the network
causing congestion at the link between node 4 and node 7.
The TCP sessions in flow 3 end at 60 seconds, at which time
the congestion is relieved and the fluid queue length comes
back zero. The results are similar with different mixture
of packet and fluid flows. As expected, with more packet

71

1: While (True) Do

2: wait for signal from main thread to start a new batch

3: copy ¢ for all network queuesCPU=GPU

4: i<=0

5: While (i < B) Do

6: invoke update_flow, update_queue and up-
date_hop

7 i<=i+1

8: If (REQ = true AND tg + i7d > Tcpy) Then

9: wait for all previously invoked kernels to complete

10: Tepu < tg +i70

11: REQ <« false

12: signal CPU main thread Tgpuy > Tcpu

13: End If

14: End While

15: wait for all previously invoked kernels to complete

16: signal CPU main thread the batch has completed

17: End While

~N

%m @@
sy

Figure 5: A small network topology with 4 flows.

D
flow 2 f flow 0 \(

flows, the queue length exhibits larger variations since the
pure fluid model can only capture average traffic behavior.
We observed the same result from the CPU-only model.

In the next validation test, we study the effect of different
batch sizes on accuracy. As we mentioned earlier, having
a large batch can introduce errors, because CPU can only
push the information about the effect of the packet flows (as
updated queue length) to GPU at the start of a batch. That
is, the influence of packet flows on fluid flows can be delayed
if the batch size is large; the result is that the background
fluid flows can become less responsive to the changes in the
foreground packet flows.

To study this effect, we use the same network model as
in the previous experiment. We designate 10 TCP sessions
in flow 2 to be packet flows. All other flows are modeled
as fluid flows. We compare the results with various batch
sizes. Fig. 7 shows the TCP congestion window size of the
four flows changes over time for three cases: B = 1,7 = 1;
B =1,7 =20; and B = 20,7 = 20. Note that the lookahead
T can be set as large as 20; however, we include the case for
B = 1,7 =1 as the baseline for comparison.

We observe similar results for the three test cases. Flow
0 and flow 1 have very similar congestion window trajecto-
ries. In comparison, flow 2 has a smaller congestion window
because it has a longer round-trip time. At 30 seconds, flow
3 (with 40 TCP sessions) arrives and immediately causes
congestion at the link between node 4 and node 7, as shown
in Fig. 6. Because of the congestion, flow 2 reduces its con-
gestion window size during this period. Consequently, both
flow 0 and flow 1 increase their window size to reclaim the
bandwidth handed out by flow 2. The B = 20 case shows
slightly larger variations than the other two cases. If we keep
increasing B more than 20, the delay effect becomes evident
and the results become unrecognizable (therefore, it’s not
shown). This experiment tells us that we cannot arbitrarily
increase the batch size; however, we do not yet know exactly

B=1, tau=1

B=1, tau=20

B=20, tau=20

£ 90

) o 80 & 80|

X X X

£ £ 70t £ 70t

4 8 60| 2 6ol

(2} (2 (2

H £ 50t £ 50t

2 2 2

H H 40 S 40

8 s 30 & 30

% 3 5

S S 20 S 20

2 2 2

5 5 | s I

8 S 10 S 10

0 . . i . . i . . . 0 i . . . 0 . . i . . i . . .
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 8 90 100

Time (in seconds)

Time (in seconds)

Time (in seconds)

Figure 7: TCP window trajectory under different batch sizes.

Pure Fluid Flows
10 Packet Sessions
500 | 20 Packet Sessions - |

Queue Length (in KB)

40 60
Time (in seconds)

Figure 6: Result from different traffic mixtures.

what would be the largest batch size one can choose to get
reasonable results.

5.2 Performance Experiments

Next we focus on evaluating the performance of our GPU-
assisted hybrid network traffic model. For this experiment,
we use the standard campus network model, which has been
used for benchmarking the performance of various network
simulators. The network consists of a variable number of
stub networks, call “campuses”. At the top level, the cam-
puses are connected as a ring with additional shortcuts be-
tween the campuses that are far apart. Each campus has
504 end hosts, organized into 12 local area networks (LANs)
connected by 18 routers. Each campus also has a server clus-
ter with 4 end hosts that can be used as the traffic source.
Each LAN consists of a gateway router connecting to 42 end
hosts with 10 Mb/s bandwidth and 1 ms delay. A campus
is divided into 4 OSPF areas. The links between the routers
in the OSPF backbone area and those in the server clus-
ter are configured with 1 Gb/s bandwidth and 10 ms delay.
All other router links have 100 Mb/s bandwidth and 10 ms
delay.

For the experiment, we choose to simulate 4, 8, and 16
campuses. We cannot run 32 campuses because of the mem-
ory limitation on the machine. Traffic on the campus net-
work is generated randomly by the end hosts requesting data
from a server in the server cluster either at the same cam-
pus or on another campus. Each end host generates 10 TCP
flows. Therefore, each campus gets 5,040 traffic flows; for 16
campuses, that’s more than 80,000 flows. On average, 50%
of the flows are set between campuses. In separate tests,
we designate 0%, 0.5%, and 1% of these flows as foreground
packet flows simulated using detailed TCP implementation;
the rest of the flows are treated as background fluid flows.
In this experiment, we set the Runge-Kutta step size to be
0.5 ms and the batch size to be 3.

72

Speedup (Hybrid/CPU-Only)
®

2 —
e

0o
0% 0.5% 1% 2.5% 5% 10% 25%

Percentage of Packet Flows

50% 100%

Figure 9: Speedup decreases with more packet flows.

We compared the performance of our GPU-assisted hybrid
model against the original CPU-only implementation. The
results are shown in Fig. 8. The normalized execution time
is the run time of the model divided by the simulation time.
That is, if the normalized execution time is bigger than 1,
we have a slow-down: the simulation runs slower than real
time. Otherwise, if it’s smaller than 1, the simulation is
running faster than real time. The CPU-only implementa-
tion (left plot) has a slow-down factor ranging from 1.3 for 4
campuses with 0% packet flows to 9.3 for 16 campuses with
1% packet flows. In comparison, our GPU-assisted hybrid
model (middle plot) is running faster than real time, except
for the case of 16 campuses with 1% packet flows. The right
plot in Fig. 8 shows the speedup of the GPU-accelerated
model over the CPU-only implementation. With more cam-
puses, more speedup is achieved as the model is benefiting
from the more data parallelism available on GPU. As ex-
pected, the highest speedup (25x) is achieved by the pure
fluid model (i.e., with 0% packet flows).

With increasing packet flows, the speedup decreases. Fig. 9
shows the speedup of our GPU-accelerated model over the
CPU-only implementation as we vary the portion of packet
flows (for 8 campuses). With more packet flows, the CPU
computation is taking over; also, the communication is be-
coming more expensive as more data needs to be transfered
between CPU and GPU. Eventually, the speedup becomes
1 when all flows are packet flows.

Our final experiment looks at the effect of batch size on
performance. Fig. 10 shows that the normalized execution
time of our GPU-assisted hybrid model decreases as we in-
crease the batch size from 1 to 7. We observe that increasing
batch size has a diminishing return in terms of performance
improvement. The results show that the performance levels
off after the batch size reaches 3 or 4. Beyond that, having
a larger batch size does not produce much better perfor-

CPU Only

0% packet flows 0% packet flows

1 0.5% packet flows
10.5% packet flows

= 1% packet flows
1% packet flows

4 8

Number of Campuses

Normalized Execution Time
ocrNWBEUON®OD
Normalized Execution Time

CPU+GPU

5
N | ' 0
4 8 16

Number of Campuses

Speedup

0% packet flows
2 0.5% packet flows

1% packet flows

4 8 16

Number of Campuses

Hybrid/CPU-Only
G

Figure 8: Performance comparison between CPU-only and GPU-accelerated implementations.

4 Campuses
0.9

8 Campuses

16 Campuses

0.55

" 1.0% packet flows ——
0.5% packet flows ------ 4

0.5 0.8

0% packet flows

0.7

" 1.0% péckel flows ——

" 1.0% péckel flows ——
0.5% packet flows ---x---- 4
0% packet flows

0.5% packet flows ---»---- 1.8
0% packet flows *.

16

0.4

1.4

06 o

0.35 T
0.5

1.2 P

0.3

0.4

0.25

0.3

0.8

Normalized Execution Time
Normalized Execution Time

02

0.2

Normalized Execution Time

0.6
0.4

0.15
0.1

0.1

0.2

Batch Size (B)

Batch Size (B)

Batch Size (B)

Figure 10: GPU performance decreases with increasing batch size.

mance; in doing so, however, may cause larger errors that
can jeopardize the validity of the simulation results.

6. CONCLUSION

In this paper, we propose a GPU-assisted hybrid network
traffic model which offloads the numerically intensive back-
ground traffic calculations to GPU, and keeps the discrete-
event simulation of the foreground packet-oriented trans-
actions on CPU. A novel mechanism that integrates fluid-
based and packet-oriented network traffic is introduced, with
several optimization techniques that can effectively overlaps
CPU and GPU computations and minimize the effect of the
inherent communication latencies between CPU and GPU.
Experiments show that our method can achieve significant
speedup over the CPU-only approach, while still maintain-
ing desirable accuracy.

Our immediate future work includes comparison of the
performance impact among the various optimization tech-
niques and further investigation of the loss of accuracy in-
troduced by batch runs. We would like to develop a method
for determining the batch size given simulation scenarios.
Our current implementation of the hybrid model is sequen-
tial. To parallelize the GPU model, we recognize the same
lookahead inherent to the fluid equations. However, in order
to achieve better parallelism, necessary mechanisms need to
be in place to support batch runs. Together with the paral-
lel packet-oriented network simulation, the GPU model shall
be able to support massive-scale network simulations with
realistic traffic characterization on today’s hybrid supercom-
puting platforms with GPUs.

Acknowledgment

We thank Dr. Kalyan Perumalla at Oak Ridge National
Laboratory for the initial discussion of the GPU design.
We also thank the anonymous reviewers for their construc-
tive comments. This research is supported in part by the

73

United States National Science Foundation grants (CNS-
0836408, CCF-0937964, HRD-0833093), a subcontract from
the GENI Project Office at Raytheon BBN Technologies
(CNS-0714770, CNS-1346688), and by the National Natural
Science Foundation of China (No. 61272087, No. 61363019,
No. 61073008 and No. 60773148), Beijing Natural Science
Foundation (No. 4082016 and No. 4122039).

7. REFERENCES

[1] B. G. Aaby, K. S. Perumalla, and S. K. Seal. Efficient
simulation of agent-based models on multi-GPU and
multi-core clusters. In Proceedings of the 3rd
International ICST Conference on Simulation Tools
and Techniques (SIMUTools’10), 2010.

J. S. Ahn and P. B. Danzig. Packet network
simulation: Speedup and accuracy versus timing
granularity. IEEE/ACM Transactions on Networking
(TON), 4(5):743-757, October 1996.

J. Cowie, D. Nicol, and A. Ogielski. Modeling the
global Internet. Computing in Science and
Engineering, 1(1):42-50, 1999.

R. M. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30-53, 1990.
GPGPU. General-purpose computation using graphics
hardware. http://www.gpgpu.org/.

Y. Gu, Y. Liu, and D. Towsley. On integrating fluid
models with packet simulation. INFOCOM, 2004.

Y. Guo, W. Gong, and D. Towsley. Time-stepped
hybrid simulation (TSHS) for large scale networks.
INFOCOM, pages 441-450, 2000.

P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kalé, and
T. R. Quinn. Scaling hierarchical N-body simulations
on GPU clusters. In Proceedings of the 2010
ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC’10), pages 1-11, 2010.

2]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

(25]

(26]

C. Kiddle, R. Simmonds, C. Williamson, and

B. Unger. Hybrid packet/fluid flow network
simulation. In Proceedings of PADS’03, pages 143-152,
2003.

T. Li, N. V. Vorst, and J. Liu. A rate-based TCP
traffic model to accelerate network simulation.
Transactions of the Society for Modeling and
Simulation International, 89, 2013.

X. Li, W. Cai, and S. J. Turner. Gpu accelerated
three-stage execution model for event-parallel
simulation. In Proceedings of PADS ’13, pages 57-66,
2013.

M. Liljenstam, J. Liu, and D. M. Nicol. Development
of an internet backbone topology for large-scale
network simulations. In Proceedings of WSC’03, 2003.
J. Liu. Packet-level integration of fluid TCP models in
real-time network simulation. In Proceedings of
WSC’06, pages 2162-2169, December 2006.

J. Liu. Parallel simulation of hybrid network traffic
models. In Proceedings of PADS’07, pages 141-151,
June 2007.

J. Liu and Y. Li. On the performance of a hybrid
network traffic model. Simulation Modelling Practice
and Theory, 16(6):656-669, 2008.

Y. Liu, F. L. Presti, V. Misra, D. F. Towsley, and

Y. Gu. Scalable fluid models and simulations for
large-scale IP networks. TOMACS, 14(3):305-324,
2004.

V. Misra, W.-B. Gong, and D. Towsley. Fluid-based
analysis of a network of AQM routers supporting TCP
flows with an application to RED. SIGCOMM, pages
151-160, 2000.

D. M. Nicol. Discrete event fluid modeling of TCP. In
Proceedings of WSC’01, 2001.

D. M. Nicol, M. Goldsby, and M. Johnson.
Fluid-based simulation of communication networks
using SSF. In Proceedings of the 1999 European
Simulation Symposium, 1999.

D. M. Nicol and G. Yan. Discrete event fluid modeling
of background TCP traffic. TOMACS, 14(3):211-250,
July 2004.

NVIDIA. Common Unified Device Architecture
(CUDA). http://developer.nvidia.com/cuda.

L. Nyland, M. Harris, and J. Prinsn. Fast N-Body
Simulation with CUDA. In H. Nguyen, editor, GPU
Gems 3, chapter 31. Addison Wesley Professional,
August 2007.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Kriiger, A. E. Lefohn, and T. J. Purcell. A survey
of general-purpose computation on graphics hardware.
In Eurographics, pages 21-51, 2005.

H. Park and P. A. Fishwick. A GPU-based application
framework supporting fast discrete-event simulation.
Transactions of the Society for Modeling and
Simulation International, 86(10):613-628, 2010.

H. Park and P. A. Fishwick. An analysis of queuing
network simulation using GPU-based hardware
acceleration. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 21(3), 2011.

K. S. Perumalla. Discrete-event execution alternatives
on general purpose graphical processing units

74

27]

28]

29]

(30]

(31]

(32]

(33]

34]

35]

[36]

37]

(38]

39]

(40]

[41]

(GPGPUSs). In Proceedings of PADS’06, pages 74-81,
2006.

K. S. Perumalla and B. G. Aaby. Data parallel
execution challenges and runtime performance of
agent simulations on GPUs. In Proceedings of the 2008
Spring simulation multiconference (SpringSim’08),
pages 116-123, 2008.

K. S. Perumalla, B. G. Aaby, S. B. Yoginath, and

S. K. Seal. GPU-based real-time execution of vehicular
mobility models in large-scale road network scenarios.
In Proceedings of PADS’09, pages 95-103, 2009.

M. Pharr and R. Fernando. GPU Gems 2:
Programming Techniques For High-Performance
Graphics And General-Purpose Computation.
Addison-Wesley, 2005.

T. Preis, P. Virnau, W. Paul, and J. J. Schneider.
GPU accelerated Monte Carlo simulation of the 2D
and 3D Ising model. Journal of Computational
Physics, 228:4468-4477, 2009.

PRIME Research Group. Parallel Real-time
Immersive network Modeling Environment.
http://www.primessf.net/.

G. F. Riley. The Georgia Tech network simulator.
MoMeTools, pages 5—-12, 2003.

G. F. Riley, T. M. Jaafar, and R. Fujimoto. Integrated
fluid and packet network simulations. In Proceedings
of MASCOTS’02, pages 511-518, 2002.

J. E. Stone, D. Gohara, and G. Shi. OpenCL: A
parallel programming standard for heterogeneous
computing systems. Computing in Science &
Engineering, 12(3):66, 2010.

W. Tang and Y. Yao. A GPU-based discrete event
simulation kernel. Transactions of the Society for
Modeling and Simulation International, 89, 2013.
TOPS500 Supercomputers Sites. http://top500.org/.
M. Verdesca, J. Munro, M. Hoffman, M. Bauer, and
D. Manocha. Using graphics processor units to
accelerate OneSAF: A case study in technology
transition. JDMS, 3(3):177-187, 2006.

L. Xu, M. Taufer, S. Collins, and D. G. Vlachos.
Parallelization of tau-leap coarse-grained Monte Carlo
simulations on GPUs. In 24th IEEE International
Symposium on Parallel and Distributed Processing
(IPDPS’10), pages 1-9, 2010.

Z. Xu and R. Bagrodia. GPU-accelerated evaluation
platform for high fidelity network modeling. In
Proceedings of the PADS’07, pages 131-140, 2007.

G. Yaun, D. Bauer, H. Bhutada, C. Carothers,

M. Yuksel, and S. Kalyanaraman. Large-scale network
simulation techniques: Examples of TCP and OSPF
models. ACM SIGCOMM Computer Communication
Review, 33(3):27-41, 2003.

J. Zhou, Z. Ji, M. Takai, and R. Bagrodia. MAYA:
Integrating hybrid network modeling to the physical
world. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 14(2):149-169, 2004.

