
2

Symbiotic Network Simulation and Emulation

MIGUEL A. ERAZO, RONG RONG, and JASON LIU, Florida International University

A testbed capable of representing detailed operations of complex applications under diverse network condi-
tions is invaluable for understanding the design and performance of new protocols and applications before
their real deployment. We introduce a novel method that combines high-performance large-scale network
simulation and high-fidelity network emulation, and thus enables real instances of network applications
and protocols to run in real operating environments and be tested under simulated network settings. Using
our approach, network simulation and emulation can form a symbiotic relationship, through which they
are synchronized for an accurate representation of the network-scale traffic behavior. We introduce a model
downscaling method along with an efficient queuing model and a traffic reproduction technique, which can
significantly reduce the synchronization overhead and improve accuracy. We validate our approach with
extensive experiments via simulation and with a real-system implementation. We also present a case study
using our approach to evaluate a multipath data transport protocol.

Categories and Subject Descriptors: I.6.3 [Simulation and Modeling]: Applications; I.6.5 [Simulation
and Modeling]: Model Development

General Terms: Algorithms, Performance, Experimentation

Additional Key Words and Phrases: Network simulation, network emulation, symbiotic simulation, DDDAS,
online simulation

ACM Reference Format:
Miguel A. Erazo, Rong Rong, and Jason Liu. 2015. Symbiotic network simulation and emulation. ACM Trans.
Model. Comput. Simul. 26, 1, Article 2 (June 2015), 25 pages.
DOI: http://dx.doi.org/10.1145/2717308

1. INTRODUCTION

The ability to conduct high-fidelity, high-performance network experiments is crucial
for studying future network systems and their complex behaviors. Existing network
testbeds offer different capabilities in terms of providing controllability for creating
diverse network scenarios, scalability for capturing large-scale network operations,
realism for reproducing important system and network effects, and performance for
supporting high-throughput, high-capacity data transport.

—Physical testbeds (e.g., PlanetLab [Peterson et al. 2002] and WAIL [Barford and
Landweber 2003]) provide a realistic operational environment for testing network
applications. They can directly test the applications in situ with the needed opera-
tional realism and live network traffic. However, physical testbeds lack controllabil-

This research is supported in part by National Science Foundation grants CNS-0836408, CCF-0937964,
and HRD-0833093, and by a subcontract from the GENI Project Office at Raytheon BBN Technologies
(CNS-1346688).
Authors’ addresses: M. A. Erazo (current), Amazon.com, 1800 9th Ave., Seattle, WA 98101; email:
miguel.erazo@gmail.com; R. Rong and J. Liu, School of Computer and Information Science, Florida In-
ternational University, Miami, FL 33199; emails: {rrong001, liux}@cis.fiu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1049-3301/2015/06-ART2 $15.00

DOI: http://dx.doi.org/10.1145/2717308

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

http://dx.doi.org/10.1145/2717308
http://dx.doi.org/10.1145/2717308

2:2 M. A. Erazo et al.

ity; it is difficult, if not impossible, to test applications not supported by the prescribed
setup of the physical environment. They are also limited in scale, which makes it
impractical for studying certain important aspects, such as application scaling and
robustness issues against diverse environments, and asking what-if questions.

—Simulation (e.g., NS-2 [Breslau et al. 2000] and OPNET [Chang 1999]) can be effec-
tive at capturing overall design aspects, answering what-if questions, and revealing
complex system characteristics, such as multiscale interactions, self-organizing be-
haviors, and emergent phenomena. Parallel simulation has also demonstrated its
capability of dealing with large-scale detailed models by harnessing the collective
power of parallel computing platforms. However, simulation often lacks a certain
level of realism—reproducing realistic network traffic and operational conditions in
simulation is labor intensive and error prone.

—Emulation (e.g., ModelNet [Vahdat et al. 2002] and EmuLab [White et al. 2002])
provides a good balance between controllability and accuracy, whereas real appli-
cations can run directly in a native operating environment. However, like physical
testbeds, its scale and capability is limited by the physical limitations of the un-
derlying platform, such as the processing power, and the network bandwidth and
latency.

A testbed capable of performing large-scale experiments, providing diverse network
scenarios and network conditions, maintaining accurate representation of the operation
of the target applications, and supporting high-throughput, high-capacity network
transactions remains elusive.

Broadly defined, simulation and emulation differ in the scope of the network func-
tions being examined. Simulation consists of software modules necessary for repre-
senting the network elements (e.g., links, switches, and end hosts) and the transactions
between them (e.g., packets and protocols). In contrast, emulation provides a runtime
environment for conducting network experiments with unmodified applications run-
ning on virtual machines or with virtual network stacks, and interacting with real
operating system interfaces and libraries. Only the network traffic between the ap-
plications is modulated to represent the target network conditions. We observe that
both simulation and emulation provide a good level of controllability and reproducibil-
ity: one can specify the detailed configuration of the target network (e.g., the network
topology, and bandwidth and delay of individual links) relatively easily, and conduct
simulation or emulation experiments in a repeated fashion. However, their expected
capabilities differ significantly.

In general, simulation is used to construct high-level network models with protocols
that may not be fully developed (e.g., those at the physical and link layers). As such,
simulation is desirable for obtaining “the big picture,” which is especially valuable
when a complete understanding of the system’s complex behavior is absent. Simulation
offers good flexibility and scalability but may not provide the necessary accuracy for
describing detailed behavior of the network or the execution environment. In contrast,
emulation allows one to execute unmodified applications directly on a real system,
which accepts application data as input and produces detailed responses as output.
It provides the operational realism but may not be able to handle all elements of a
large-scale network experiment due to resource constraints. It is also more difficult to
set up an emulation environment capable of representing diverse network topologies
and arbitrary traffic conditions.

To allow high-fidelity, high-performance large-scale experiments, we propose a
method to combine both simulation and emulation. We use the simulation system
to run the full-scale network model in real time with detailed network topology and
protocols for a close representation of a target network. To simulate potentially large-

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

Symbiotic Network Simulation and Emulation 2:3

scale network systems, we also adopt parallel simulation and advanced traffic modeling
techniques. We use the emulation system to inspect the detailed behavior of the real
applications. We select a number of nodes in the target network as “emulated” and run
unmodified software directly on specified operating systems, with real network stack,
libraries, and software tools.

In our approach, simulation and emulation form a symbiotic relationship through
which each can benefit from the other. Both systems evolve in real time. The simula-
tion system benefits from the emulation system by incorporating real network traffic
generated by the unmodified software running on the real platforms. The emulation
system benefits from the simulation system by receiving up-to-date information of the
global network behavior and traffic conditions, and using it to calibrate communication
between the real applications. As a result, the symbiotic approach allows us to test and
analyze applications by embedding them seamlessly in target virtual networks with
diverse network conditions.

In this article, we present the symbiotic approach that exploits the mutually benefi-
cial relationship between simulation and emulation. Specific contributions of this work
can be summarized as follows:

—We introduce a model-downscaling technique that can significantly reduce the com-
plexity of large-scale network models in terms of the number of modeling elements
(e.g., network nodes, links, and queues) needed for accurately representing the flows
and their interactions. In doing so, we are able to improve the computational effi-
ciency of the emulation system and reduce the synchronization overhead between
the simulation and emulation systems, both operating in real time.

—We propose a queuing model for the downscaled emulation system that can efficiently
represent the transient behavior of a large-scale simulated network. In doing so, it
can accurately capture the interaction between the emulated applications and the
simulated traffic at the network queues.

—We propose a technique for reducing the synchronization overhead for the emula-
tion system to update the simulation system on the state of the emulated traffic.
Rather than measuring and transferring detailed device-level statistics, we propose
collecting the traffic demand at the transport layer in emulation and using the same
transport-layer protocols implemented in simulation to reproduce the flows.

The rest of this article proceeds as follows. In Section 2, we present an overview of
our symbiotic approach. In the next three sections, we introduce specific techniques of
our symbiotic simulation and emulation approach. More specifically, in Section 3, we
present the model-downscaling technique to achieve effective emulation. In Section 4,
we present the queuing model for capturing the transient behavior of simulated net-
work traffic on emulated applications. In Section 5, we introduce the technique for
reproducing the emulated traffic in simulation. We conducted extensive experiments
to validate our approach. In Section 6, we describe experiments for validating the
queuing model using a simulator of the symbiotic system. In Section 7, we describe
a prototype implementation of the symbiotic system and the real-system validation
results. We also present a test case of a multipath data transport protocol showcasing
the utility of our system in Section 8. Finally, we describe related work in Section 9
and provide our conclusions in Section 10.

2. THE SYMBIOTIC APPROACH

A network experiment consists of a target network network with a detailed specifica-
tion of the network topology, potentially connecting a large number of hosts and routers
running various network protocols and applications. Directly running the applications
and protocols on real machines brings at least two advantages. First, implementing

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

2:4 M. A. Erazo et al.

Fig. 1. The symbiotic approach.

complex distributed applications and network protocols in simulation can be difficult.
As such, the modelers typically implement in simulation only a subset of the functions
of the applications considered as essential. In certain cases, however, it is not imme-
diately clear which part of the applications shall be rendered in simulation with great
accuracy. Second, directly running the applications in real systems offers a level of
operational realism unavailable in simulation; for example, it is often impossible to in-
vestigate software configuration issues, system dependencies, deployment constraints,
and other system-related artifacts in simulation. Using our symbiotic approach, al-
though it is expected that most of these protocols and applications are simulated, some
hosts and routers can be real—they can run unmodified applications and real instances
of network protocols on real machines.

Let us first standardize the terminologies used to describe our approach. Specifically,
we call the network that one investigates in the experiment the target virtual network,
and we call the applications that are expected to run on the target virtual network the
target applications. To differentiate from the simulated components, we name the real
machines that run the target applications the emulated hosts or emulated routers, and
we name the traffic between the emulated hosts and routers either emulated traffic
or emulated flows. Note that the emulated components, including the emulated hosts,
routers, and emulated flows, also need to be represented in simulation. One should
be able to distinguish the physical realization of the emulated components from their
simulated representation easily from the context.

Figure 1 (top portion) shows an example of a target virtual network consisting of
both simulated and emulated components. In particular, the network contains four
emulated hosts, H1 to H4, and two emulated routers, R1 and R2, all marked with
solid circles. The rest of the target virtual network will be simulated. The emulated
hosts and routers will be instantiated and run as individual machines (either physical
machines or virtual machines) in the emulation system. The emulated hosts will run
target applications, such as Web clients, Web servers, and peer-to-peer applications.
The emulated routers will typically run routing software as target applications (e.g.,
Handley et al. [2005], Kohler et al. [2000], and Open vSwitch [2013]).

During the experiment, the target applications at the emulated hosts and routers
may engage in communication with one another over the simulated network. As shown
in this example, there are two emulated flows: one between H1 and H2, and the other
between H3 and H4. Note that the two flows digress at R1 and R3, where R1 is an
emulated router and R3 is a simulated router. Since the emulated flows are mixed with
the simulated ones, one must be able to accurately capture the effect of the simulated
flows on the emulated flows and vice versa.

Figure 1 presents a schematic view of the architecture of the symbiotic system,
which consists of a simulation system and an emulation system in a closed loop. The
simulation system runs the full-scale network model with a detailed specification of

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

Symbiotic Network Simulation and Emulation 2:5

the network topology, traffic, and protocols. The network model can be partitioned
and mapped onto a parallel computing platform for parallel simulation to represent
detailed transactions of a large-scale network in real time. The emulation system
consists of a set of emulated hosts and routers as physical or virtual machines that
run the target applications. The emulated hosts and routers are connected via a set of
active “pipes,” which are software constructs responsible for conducting and modulating
the real network traffic between the emulated hosts and routers so that the packets
probabilistically experience the same delays and losses as if the target applications
were directly connected by a real full-scale network.

The symbiotic approach allows us to run real network applications and protocols
directly in the real machine environments. We can test these target applications by
embedding them in a large-scale network setting, and evaluating them using diverse
network configurations and traffic conditions created by simulation. Of course, the
effectiveness of the symbiotic approach lies in its ability to efficiently and accurately
modulate the emulated traffic in accordance with the simulated network conditions.
Due to the interdependency of the simulation and emulation systems, the two systems
must be effectively synchronized.

More specifically, we need to address two issues related to the synchronization of the
simulation system and the emulation system. One issue is that the two systems must
be time synchronized so that they can communicate using the same time frame. This
problem has been dealt with before using real-time simulation [Liu 2008]. The same
technique can also be applied to parallel simulation by augmenting the simulator with
functions that regulate the clock advancement in logical processes in accordance with
the wall-clock time [Liu 2013].

The other issue is that the two systems need to communicate so that in combination
they can represent the true state of the target virtual network. In other words, the
two systems must effectively exchange their state. One existing approach is to directly
“inject” the network packets generated by the target applications into the simulator—
that is, we generate a simulation event to represent each packet that traverses a
simulated link. Similarly, when a simulated packet reaches an emulated host or router,
a real packet must be created in the emulation system. Although this approach has
been shown to be capable of achieving accurate results, the overhead is significant. As
such, the throughput of the the emulated flows is bounded by the I/O capacity of the
connection between the two systems, which can severely compromise the accuracy of the
system, especially when the emulated traffic load approaches the capacity limitation.

We note that the emulated traffic (i.e., the flows of real packets sent between the
target applications running on the real machines) will affect the simulated traffic (i.e.,
the traffic between the network entities in the simulation model). The reverse is also
true. Both types of traffic compete for the network resources, including the buffer space
at the network queues and the bandwidth of the communication links. For example, a
sudden increase in emulated traffic may can cause congestion to happen at a link in the
target virtual network. When it happens, it can affect (or simply “strangle”) all traffic
traversing the same link (including both simulated and emulated flows) because of
congestion control, which in turn would affect other parts of the target virtual network
traversed by these flows and therefore cause a ripple effect.

We observe, however, that unless the traffic is between a simulated host and an
emulated host,1 both systems only need to consider the reciprocal effect of the simu-
lated and emulated traffic—in this case, there is no need to exchange network packets
between the two systems! The simulation system only needs to update the emulation

1The case for interactive simulation, which allows directly exchanging traffic between emulated hosts and
simulated ones, has been explored in our previous studies (e.g., Erazo et al. [2009] and Liu et al. [2009]).

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

2:6 M. A. Erazo et al.

Fig. 2. An example using the model downscaling method.

system with the effects of the simulated traffic at the corresponding pipes. Similarly,
the emulation system only needs to update the simulation system about the state of the
emulated traffic between the target applications. In subsequent sections, we elaborate
on the individual challenges and solutions of our symbiotic approach.

3. EMULATION MODEL DOWNSCALING

As mentioned previously, the symbiotic approach aims to address the discrepancy in
capabilities between simulation and emulation by combining them, using simulation
to handle network models at scale and using emulation to directly test target appli-
cations. Therefore, one does not need to initiate the full-scale network model in the
emulation system as long as the same network experience can be rendered for the tar-
get applications when they communicate with one another. In this section, we present
a model downscaling method for reducing emulation complexity.

The downscaled model needs to be functionally equivalent to the full-scale simulated
network model in terms of determining the end-to-end packet delays and packet losses.
More specifically, the downscaled model must be able to capture two important network
effects:

(1) The cross-traffic effect. The full-scale network will be populated with traffic origi-
nated from both simulated and emulated hosts. When calculating the end-to-end
delays and packet losses between a pair of emulated hosts, we need to consider the
effect of other traffic traversing the same segment of network links.

(2) The multibottleneck effect. The emulated traffic may traverse several intermediate
routers where congestion can happen. The effect of multiple bottlenecks is location
dependent and time varying, and may highly depend on the simulated network
conditions.

Our model downscaling method consists of two steps. Figure 2 shows an example
with a simple network topology (with user-defined link bandwidths and delays) to
illustrate the steps taken by our method. In the first step, the algorithm takes the
original network topology as input and prunes the topology by removing the network
nodes and links not traversed by emulated flows. The simulated hosts and routers are

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

Symbiotic Network Simulation and Emulation 2:7

not instantiated in the emulation system; therefore, the hosts and links that carry only
simulated traffic are not needed in emulation for modulating emulated traffic. Note
that this step assumes that network routing can be determined statically. This can be
achieved, for example, via “spherical routing,” which calculates static network forward-
ing tables before simulation starts, according to either shortest paths or simple policy
specifications [Van Vorst et al. 2011b]. In cases where one needs to simulate detailed
routing protocols to handle dynamic routing behaviors, we have to be conservative and
instead preserve all of those links that can potentially be visited by emulated flows.
The pruning here is for efficiency; it does not affect correctness.

The network topology can be further pruned if we have information a priori about the
communication pattern between the emulated hosts. In particular, if we know that two
emulated hosts will never contact each other during the experiment, we do not need to
maintain the path between the two emulated hosts. In the worst case, we can assume
that all emulated hosts are capable of contacting all other emulated hosts. Figure 2(a)
shows the original model, where A, B, and C are emulated hosts, and all other nodes
are simulated. Figure 2(b) shows the pruned topology, only with the emulated hosts
and links potentially carrying emulated traffic between them.

In the second step, the algorithm takes the pruned topology as input and compresses
the set of links traversed by the same emulated flows into one network segment. We will
use a single entity in emulation to represent a network segment, because the emulated
flows traversing the same segment would experience similar network conditions: they
visit the same set of queues with similar queue lengths, share the same available
bandwidths, and interact with the same set of simulated flows. Figure 2(c) shows the
results of the path compression step. For example, the network path between the two
emulated hosts A and B consists of two segments—one between host A and router
R, and the other between router R and host B—as the two segments carry different
emulated flows.2

The resulting downscaled topology will be mapped onto the emulation system. The
emulated hosts and routers will be instantiated on individual machines and run des-
ignated target applications. The network segments will be represented as “pipes” on a
separate delay node, as shown in Figure 2(d). The emulated packets flowing through
these pipes can be dropped or added with artificial delays to reflect the simulated
network conditions. The state of the pipes will be updated constantly in real time by
the simulation system using the statistics collected at the network interfaces corre-
sponding to the segments. In the next section, we describe the queuing model through
which we can efficiently update the state of the pipes and ensure that the downscaled
emulation model can accurately represent the simulated network conditions.

4. EMULATING NETWORK PATHS

A network segment consists of one or more links traversed by the same set of emulated
flows. Here we propose a queuing model to estimate the packet delays and packet
losses for the emulated flows traversing the same network segment. In particular, we
use a single M/D/1 queue to model the network effect at a segment in the emulation
system. We adopt the M/D/1 queuing model because it is simple and easy to manipulate
in a closed form. We later show empirically that the model is not limited to Poisson
arrivals; it can produce good results for almost all types of traffic with which we have
experimented so far.

2For the sake of simplicity, the example treats the path as bidirectional; in reality, there needs to be a
separate path for each direction (which is not necessarily traversing the same set of nodes), and each path
needs to be compressed separately.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

2:8 M. A. Erazo et al.

Fig. 3. Queuing model for a single-link segment.

In our model, the service rate and the drop probability of the M/D/1 queue are
calibrated periodically using simple measurements from simulation to calculate the
effect of the simulated traffic at the corresponding segments. It has been observed
that network traffic characteristics change insignificantly within small time intervals.
For example, it is safe to assume that the packet loss rate, the packet delay, and the
throughput would remain relatively constant for at least 1 minute [Zhang and Duffield
2001]. Consequently, one can expect that our queuing model can be applied at regular
time intervals large enough to overcome the synchronization overhead between the
simulation and emulation systems.

In the following discussion, we first deal with the situation that the network segment
consists of only one link; we develop a closed-form solution only for steady state. We
then extend the model to deal with multilink segments. After that, we complete the
model by capturing the transient behavior of both network segment types.

4.1. Steady-State Queuing Model for Single-Link Segments

Figure 3 depicts our queuing model for a segment with only one link. In simulation, a
segment is traversed by both simulated and emulated flows. The emulated flows are
regenerated in simulation; we discuss this method in the next section.

Let λs be the arrival rate of all simulated flows entering the segment, and let λp
be the arrival rate of all emulated flows entering the segment. Let μ be the link
bandwidth. Upon a packet arriving at a network queue (at a network interface), if the
buffer is full, the packet will be dropped. Let p be the drop probability due to buffer
overflow. Let λe

s and λe
p be the effective arrival rate of the simulated flows and emulated

flows, respectively. We have λe
s = λs(1 − p) and λe

p = λp(1 − p). We use W1 to denote
the average packet delay (including both simulated and emulated traffic) through the
segment, which can be measured easily in simulation.

A segment in simulation is represented in emulation as a pipe and is modeled as an
M/D/1 queue (with infinite buffer). We drop packets with probability p before they enter
the queue. In emulation, we have only emulated flows. We aim to set the service rate
of the queue, μ∗, so that once an emulated packet enters the queue, it will experience
the same delay as it would in simulation.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

Symbiotic Network Simulation and Emulation 2:9

Fig. 4. Queuing model for a multilink segment.

For M/D/1, the average number of jobs in the system, L, can be obtained in a closed
form:

L = ρ + ρ2

2(1 − ρ)
, (1)

where ρ is the server utilization. We can then calculate W2, the average time a job
spent in the system:

W2 = L
λe

p
=

ρ + ρ2

2(1−ρ)

λe
p

. (2)

We set W1 = W2, as it is expected that the original model and the downscaled model
should generate the same average packet delay. We know that ρ = λe

p/μ
∗. We can

calculate the service rate of the queue:

μ∗ = λe
p

1 + W1λe
p −

√
1 + W2

1 (λe
p)2

. (3)

Note that μ∗ is simply a function of the average packet delay (W1) and the effective
arrival rate of the emulated flows (λe

p), both of which can be obtained easily from
simulation. We also measure the packet loss probability in simulation and impose the
same probability to drop packets before they enter the queue.

4.2. Steady-State Queuing Model for Multilink Segments

The previous queuing model can be readily extended to represent a network segment
with multiple links. Figure 4 depicts our method with a segment consisted of three
links. We measure the drop probability, the effective arrival rate, and the average
packet delays of all emulated flows for each link.

We can still use Equation (3) to calculate the service rate. In this case, W1 is the
average delay of packets traversing the whole segment, and λe

p is the minimum of
the effective arrival rates at all network interfaces (i.e., the effective arrival rate at the
bottleneck link). It is the same as the throughput achieved by the emulated traffic. We

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

2:10 M. A. Erazo et al.

can calculate the overall packet drop probability as p = (1 − ∏n
i=1(1 − pi)), where pi is

the drop probability at the ith link, assuming that the segment consists of n links.

4.3. Handling Transient Behavior

The steady-state solution yields good results when the network congestion level is low.
However, the model fails to predict accurate packet delays when congestions occur. This
is because the model represents the averaged long-term behavior when the physical
system reaches the steady state for each update interval. This could be far from the
truth if the congestion level is high when the packets experience significant queuing
delays.

It is a nontrivial task to find a general closed-form solution for the transient be-
havior. Our solution to this problem is a practical one. We observe that when network
congestion happens, the packet delays measured in simulation will be different from
the predicted values calculated by the steady-state queuing model due to the transient
behavior. To remove such discrepancies, we can adjust the packet processing speed in
emulation so that the delays match the simulation results.

Let �T be the interval at which the simulation system updates the emulation system
with its measurements. At the beginning of each update interval, say, at time t, let p(t)
be the measured drop probability, let λe

p(t) be the effective arrival rate of the emulated
flows, and let W1(t) be the average packet delay through the network segment. All of
these measurements are collected during the last interval in simulation.

Let W2(t) be the average packet delay through the corresponding pipe in emulation,
which we can measure during the same period. The difference between W1(t) and W2(t)
indicates the effect from the transient behavior. We can calculate such difference in the
number of packets in the queuing system during this period:

�L(t) = μ∗(t)(W2(t) − W1(t)), (4)

where μ∗(t) is the steady-state service rate calculated using Equation (3). Now we can
compute the excess (or deficit) service rate to compensate for the transient effect:

�μ∗(t) = �L(t)
�T

= μ∗(t)(W2(t) − W1(t))
�T

. (5)

Finally, we can add the adjustment to the steady-state service rate to arrive at the final
service rate used for the queue in emulation during the next update interval:

μ̂(t) = μ∗(t) + �μ∗(t)

= λe
p(�T + W2(t) − W1(t))

�T (1 + W1(t)λe
p(t) −

√
1 + W2

1 (t)λe
p(t)2)

. (6)

The adjustment effectually forces the emulation system to “track” the simulated
network conditions at each update interval. Experiment results, which we show in
Section 6, confirm that using the adjusted service rate the emulation system is able to
match with the simulated network behavior even during extremely heavy congestions.

5. REPRODUCING EMULATED FLOWS IN SIMULATION

Our queuing model is based on the assumption that the emulated flows—those between
the target applications in the emulation system—can be faithfully reproduced in sim-
ulation. In Figure 3, we showed that the same arrival rate is used for the emulated
flows entering the network segment in simulation and entering the corresponding pipe
in emulation.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

Symbiotic Network Simulation and Emulation 2:11

To do that, one approach is to directly “inject” the packets generated by the target
applications into the simulator. In other words, we generate a simulation event to
represent the arrival of each emulated packet in emulation. Similarly, when a simulated
packet reaches an emulated host or router, a real packet will be created in emulation.
This is the approach taken by real-time simulation [Liu 2008], which has been shown
to be capable of achieving fairly accurate results. The problem with this approach is
that the throughput of the emulated flows is bounded by the I/O capacity of the system;
the accuracy of the model can be severely compromised if the emulated traffic load
reaches its limitation [Liu et al. 2009].

We propose a different approach. Rather than directly injecting the emulated pack-
ets generated by the target applications into simulation, we make the emulated hosts
report only the traffic demand of the target applications to simulation as metadata. In
particular, the emulated hosts only need to capture the number of bytes (appBytes) re-
quested by the target applications to be sent through the transport layer. In simulation,
we implement the same transport layer to generate the simulated packets accordingly
and recreate the same traffic load as in the emulation system.

This method obviously can scale better, as it does not require exchanging individual
network packets between the simulation and emulation systems; however, it depends
on a careful implementation of the TCP/IP stack in simulation so that it can create the
same traffic behavior as in the real systems. For example, the simulator needs to include
various TCP flavors used commonly by the real systems. Previously, we implemented
and validated 14 TCP variants in our network simulator, which are found commonly
in use today—New Reno, BIC, CUBIC, and others. We ported code specific to the
congestion control mechanism of of these TCP variants directly from the Linux TCP
implementation [Erazo et al. 2009].

There are several methods to capture the data size sent by the target applications.
One way is to use /proc on Linux or similar facilities. This approach is most straight-
forward; however, it only supports polling, which would generate noticeable overhead
if a small polling interval is needed to achieve accuracy. Another approach is to replace
the transport layer functions in the communication library with one added with a call-
back feature whenever the send functions are invoked. This can be achieved without
modification to the application source code, through either static or dynamic linking
(e.g., Liu et al. [2003]). It is also possible to develop a kernel module to achieve the
same function.

As a proof of concept, here we simply rewrite the target applications, such as iperf,
and let them report, through interprocess communication, to another program running
on the same machine, which we call the traffic sensor. The traffic sensor is expected
to update the simulator for each application data transfer request, which includes
the transfer size and the source and destination addresses. Upon receiving this infor-
mation, the simulator invokes the the same transport layer protocol to generate the
packets accordingly.

6. MODEL VALIDATION

In this section, we first validate the queuing model. Here we use a simulator of the
symbiotic system so that we can conveniently explore various network settings and stay
clear from the potential system-related artifacts in a real implementation. (We present
real-system validation in the next section.) In particular, we aim to find out whether our
queuing model is robust and can accurately capture the interaction between simulated
and emulated traffic in the reduced model as in the full-scale model. For that, we
start with a simple single-link segment and then extend it to a multilink segment. We
experiment with different packet arrival processes (including those from real packet
traces) and with different mixtures of simulated and emulated traffic.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

2:12 M. A. Erazo et al.

6.1. Single-Link Validation

We first conduct an experiment to validate the queuing model, assuming that a
network segment contains only one link. We examine whether the queuing model
can be generalized and used for different packet arrivals with different mixture of
simulated and emulated flows. In particular, we test the model with different packet
interarrival time distributions: exponentially distributed, a combination of constant
and exponentially distributed, and from real packet traces. We test whether the model
can produce the same packet delays in the downscaled model in the emulation system
as those in the full-scaled model in the simulation system.

In the experiments, we designate two flows at a network interface: one as “simulated
flow” and the other as “emulated flow,” each with an independent input process. At
each second (i.e., we set the update interval �T = 1 second), we measure the drop
probability, the effective arrival rate of the emulated flow, and the average packet delay
of both emulated and simulated flows at the network interface. The measurements are
collected in a trace file and later are used by a subsequent simulation of the emulation
system that has only the emulated flow with exactly the same packet arrivals.

Poisson arrivals. We first set the packet interarrival time of both simulated and
emulated flows to be exponentially distributed. We set the bandwidth of the network
interface to be 10Mbps and the queue length to be 1.5MB. We also fix the packet size to
be 1,500 bytes in this study. We vary the aggregate arrival rate of both simulated and
emulated flows to be 10%, 50%, and 90% of the bandwidth for different service levels,
and we vary the proportion of the emulated flow to be 20%, 50%, and 80%, respectively.
We examine the accuracy of the model by comparing the packet delays between the
original and the downscaled system.

Figure 5 shows the average packet delays measured at each second during the ex-
periment for low, mid, and high service utilization scenarios. In all cases, the results
match quite well. The difference is almost negligible: around 10μs for 10% utilization,
40μs for 50% utilization, and below 1μs for 90% utilization.

Mixed Poisson and constant arrivals. Next, we set the packet interarrival time of the
emulated flow to be constant and that of the simulated flow to be exponentially dis-
tributed, and vice versa. We use the same settings as those in the previous experiment.
We also vary the aggregate arrival rate of both simulated and emulated flows to be
10%, 50%, and 90% of the total bandwidth, and we vary the proportion of the emulated
flow to be 20%, 50%, and 80%, respectively.

Figure 6 shows the average packet delays for different service utilizations when the
packet interarrival time of the emulated flow is constant and that of the simulated
flow is exponentially distributed, and the portion of the emulated flow is fixed at 20%.
Figure 7 shows when the emulated flow is exponentially distributed and the simulated
flow is constant. Similar results (not shown) are obtained for a different mixture of the
simulated and emulated flows. In all cases, the model matches well with differences
below 1μs.

Real packet traces. The simulator is able to replay packet traces generated by tcpdump
so that we can reproduce similar traffic demand, with the same packet sizes and
interarrival times, as in the real system. We also add functions in the simulator to
either dilate or contract packet interarrival times by a constant factor to artificially
adjust the traffic intensity if needed.

For this experiment, we use a packet trace from the CAIDA Anonymized Inter-
net Traces 2011 Dataset [CAIDA 2011]. The trace is collected at an OC-192 link
(9,953Mbps), consisting of more than 20 million packets. We replay the CAIDA trace
as the simulated flow. Here we show the results of two experiments: one with a link

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

Symbiotic Network Simulation and Emulation 2:13

Fig. 5. Packet delays for Poisson arrivals at different utilization levels.

bandwidth of 1Gbps and the other with 100Mbps. For the 1Gbps experiment, we dilate
the packet trace (i.e., multiply the packet interarrival time) by a factor of 30; for the
100Mbps experiment, we dilate the packet trace by a factor of 100. In this case, we get
a lower traffic intensity for the first scenario than the second. In both scenarios, we
limit the buffer size to be 12.5MB. We play the trace as the simulated flow and then
cut it off at around 30 seconds to create a burst at the beginning of the experiment.
The emulated flow is exponentially distributed, and its arrival rate is set at 50% of the
bandwidth. The emulated flow lasts for the entire experiment.

Figure 8 compares the average packet delays measured in the original and the
downscaled systems. In the first scenario (with 1Gbps bandwidth), there is rarely any
congestion; there is no significant queuing delay, and the average end-to-end delay
stays around 3ms. In the second scenario (with 100Mbps bandwidth), during the first
5 seconds, the queue builds up quickly until packets start to get dropped. The packet
delay is much higher in this case than the previous one. The congestion persists until
33 seconds before the average packet delay drops down, resulting from the cutoff of
the simulated flow. For both scenarios, the original and the downscaled model produce
very similar results.

Exploring various network settings. To quantitatively evaluate the effectiveness of
our model to emulate a single link, with and without congestion, we run a batch of
experiments using different bandwidths and buffer sizes. In particular, we set the link
bandwidth to be 1, 10, or 100 Mbps, and the buffer size to be 100, 500, or 1,000 packets.
We fix the packet size to be 1,500 bytes. For each distinct bandwidth and buffer size
setting, we independently set the packet arrival rate of the emulated flow and that of
the simulated flow to be 12% , 25% , 50% , or 75% of the link bandwidth. Consequently,

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

2:14 M. A. Erazo et al.

Fig. 6. Packet delays for constant emulated flows and exponentially distributed simulated flows at different
utilization levels.

we conduct a total of 16 experiments (with separate settings for the packet arrival
rate for the emulated flow and for the simulated flow) for each distinct bandwidth and
buffer size setting. Each experiment is run for 100 seconds.

Table I shows the difference in the average packet delays, the average number of
dropped packets, and the average number of received packets between the original and
the downscaled system—the numbers are averaged across the 16 experiments for each
combination of link bandwidth and buffer size.

The average percentage error (shown in parentheses) for the number of dropped
packets and the number of received packets is very small, indicating a good match
between the two systems. The packet delay error for emulating a link with a bandwidth
of 100Mbps is less than 1ms. It goes up to 2ms for a 10Mbps link and 8ms for a
1Mbps link. This is mainly due to the packet transmission time. Such error would be
mostly imperceptible for high-bandwidth, high-latency links. Overall, the results show
conclusively that our queuing model provides a good approximation when emulating a
single link regardless of the congestion level.

6.2. Multiple-Link Validation

In the previous section, we showed the validation results for a segment consisted of only
a single link. In this section, we examine the model behavior when a segment contains
multiple links. Our model downscaling technique compresses the links traversed by
the same set of emulated flows into one network segment and uses a single queue
in emulation to calculate the packet delays and losses. However, different links may
involve different simulated flows. We need to find out whether the queuing model in

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

Symbiotic Network Simulation and Emulation 2:15

Fig. 7. Packet delays for exponentially distributed emulated flows and constant simulated flows at different
utilization levels.

Fig. 8. Results from using the CAIDA trace.

this case is able to accurately capture the traffic behavior in terms of end-to-end packet
delays and packet losses in the presence of cross traffic and multiple bottlenecks.

We use a network that consists of three nodes connected in tandem with distinct
bandwidths. The setup is similar to the one shown in Figure 4. We designate an em-
ulated flow to traverse all three network interfaces. We also direct three simulated
flows, each entering at a different network interface, but all existing at the last one.
The simulated and emulated flows have independent input sources with potentially
different packet arrival rates.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

2:16 M. A. Erazo et al.

Table I. Errors from a Single-Link Segment

Bandwidth Buffer Size Packet Delays Packets Lost Packets Received
(Mb/s) (packets) (msec) (% error) (% error) (% error)

1 100 8 (7.96%) 2.06 (0.22%) 3.25 (0.07%)
1 500 8 (7.63%) 5.93 (0.56%) 7.12 (0.16%)
1 1,000 7 (7.57%) 2.93 (0.49%) 3.00 (0.07%)

10 100 2 (8.83%) 18.56 (0.13%) 21.37 (0.04%)
10 500 2 (7.93%) 34.18 (0.29%) 32.12 (0.07%)
10 1,000 2 (7.78%) 24.43 (0.22%) 21.00 (0.04%)
100 100 0.3 (5.04%) 141.50 (0.62%) 56.75 (0.01%)
100 500 0.4 (3.90%) 183.12 (0.17%) 98.56 (0.02%)
100 1,000 0.4 (3.67%) 209.00 (0.19%) 113.12 (0.02%)

Fig. 9. Results from staggered arrivals.

Like before, we conduct two back-to-back simulations for each experiment setting—
one for the original system and the other for the downscaled system. During the simu-
lation of the original system, we measure the drop probability and the effective arrival
rate of the emulated flow at each of the three interfaces. We also record the end-to-end
delays through the network segment. These measurements are collected and stored in
a trace file, and used by a subsequent simulation of the downscaled system.

Staggered arrivals. In this experiment, we set the bandwidth of the three links to be
1, 10, and 100 Mbps, respectively. We fix the packet size to be 1,500 bytes. The buffer
size of all network queues is set to be 200 packets. The packet arrivals for all flows are
Poisson. We set the arrival rate of the emulated flow to be 50 packets/second—that is is,
600Kbps. We set the arrival rate of the three simulated flows to be 600Kbps, 9.6Mbps,
and 99.6Mbps, respectively.

We start the emulated flow at the beginning of the experiment and let it persist
through the whole experiment, which lasts for 120 seconds. We start the simulated flows
in reverse order. The one entering the third network interface starts at the beginning
of the experiment and lasts for 40 seconds. The one entering the second interface starts
at 30 seconds and ends at 50 seconds. The one entering the first interface starts at
60 seconds and ends at 80 seconds. In this way, we manage to create three separate
congestion points in the network segment.

Figure 9 shows the packet delay, the cumulative packet loss, and the throughput
of the emulated flow over time. The delay and the throughput are average values
measured at each second. We see clearly from the delay plot that congestion happens
between 30 and 50 seconds, and between 60 and 100 seconds. In addition, we see that
it takes some time before a congestion can be cleared up—the figure shows that the
average delay waits until 106 seconds to come back to normal. The first link is the
slowest; as expected, longer packet transmission time at the first queue causes longer
packet delays during the congestion (between 60 and 106 seconds).

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

Symbiotic Network Simulation and Emulation 2:17

Table II. Errors from a Multilink Segment

μ1 μ2 μ3 Packet Delay (%) Packet Losses (%) Throughput (%)
10 10 10 1.72 0.30 0.28
10 10 100 1.96 0.59 0.28
10 100 10 1.91 2.47 0.21
10 100 100 0.85 0.40 0.15
100 10 10 0.54 0.32 0.99
100 10 100 0.55 0.18 0.79
100 100 10 0.19 0.37 0.97
100 100 100 1.8 0.23 0.10

The packet loss is also significant between 60 and 100 seconds; this is because the
emulated and simulated flows are mixed up with the same proportion at the first
queue and therefore share the loss equally. At the other two queues, the simulated flow
dominates the emulated flow; the losses are there but much more insignificant. In all
cases, the results from the original system and the downscaled system match well.

Exploring various network settings. To quantitatively evaluate the effectiveness of
our queuing model for emulating a segment with multiple links, we run a batch of
experiments using different bandwidths for the links. To assess accuracy, we again
compare the average packet delay, the number of dropped packets, and the number of
received packets between the original downscaled systems.

Like in the previous experiment, we fix the packet size to be 1,500 bytes and the buffer
size to be 200 packets, and we use Poisson arrival for all flows. Unlike the previous
experiment, here we independently set the bandwidth of the three links to be either 10
or 100 Mbps. Since we have three links, each with two possible settings, there are eight
combinations of the link bandwidth settings. For each of the eight settings, we conduct
six separate experiments by setting the packet arrival rate of all flows to be 12%, 25%,
50%, 100%, 125%, or 150% of the bandwidth of the link where the respective flow is
entering the system. For example, if the bandwidth of the first link (μ1) is 10Mbps, the
bandwidth of the second and third link (μ2 and μ3) is 100Mbps, and the arrival rate of
all flows is 50%, it means that the packet arrival rate of the emulated flow and the first
simulated flow would be 5Mbps, and the packet arrival rate of the second and the third
simulated flow would be 50Mbps.

We run the simulations for 500 seconds. All flows start at time zero and last for
the entire duration of the experiment. Table II shows the differences between the
original and downscaled systems in packet delays, packet losses, and throughput of
the emulated flow. Each row represents a different permutation of the link bandwidth
setting and shows the result averaged among the six experiments with different traffic
intensity. Again, the two systems match well. The errors are all below 2%.

7. REAL SYSTEM IMPLEMENTATION

We implemented a network testbed, called symbiosim, as a prototype realization of our
proposed symbiotic approach. In this section, we briefly describe the design and imple-
mentation of the system, and present results from preliminary experiments involving
real applications and protocols.

7.1. Prototype Implementation

The prototype consists of several components, including a simulator, an emulator using
physical machines for emulated hosts and delay nodes, and several utility programs
for connecting the simulator and the emulator.

We use PRIME [2013] for high-performance network simulation. PRIME can run
the full-scale network model in real time on parallel platforms. The simulator also has

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

2:18 M. A. Erazo et al.

detailed models for various congestion control algorithms of common TCP variants,
which have been validated extensively [Erazo et al. 2009].

We use dummynet [Rizzo 1997] as the the network emulator, which functions as the
“delay node.” The network is represented as a set of pipes with specific delay constraints.
We apply our queuing model, and set the bandwidth and packet drop probability of the
pipes using the statistics collected by the simulator to control the real network packets
being pushed through them.

We instantiate PRIME, dummynet, and the emulated hosts and routers on indi-
vidual physical machines on ProtoGENI [2013]. ProtoGENI allows us to allocate an
experiment slice, which can be configured to contain a set of machines with specific
operating systems and network connections on an EmuLab cluster—citeEMULAB.

We create three utility programs to facilitate communication between simulation
and emulation. The first utility program is called the data gatherer, which is expected
to run side by side with the simulator instance.3 The program takes as input the raw
statistics exported by the simulator at the end of each update interval for all simu-
lated network interfaces traversed by emulated flows. It puts together the packet drop
probabilities and calculates the service rates for the corresponding network segments,
then sends the update information to dummynet. The same program is also responsi-
ble for gathering information about the traffic demand from the emulated hosts (in the
emulation system) and informing the simulator to regenerate the flows in simulation
accordingly.

We run the second utility program, called the actuator, at the machine that runs
dummynet (i.e., the delay node). The program receives the state information from
the data gatherer and then updates the parameters of the corresponding pipes in
dummynet, including the drop probabilities and the service rates.

At each emulated host, we run third utility program, called the traffic sensor, which
collects the target applications’ traffic demand in number of bytes. As a prototype, we
simply rewrite the target applications and have them report to the co-located traffic
sensor program through interprocess communication. The program collects the infor-
mation and then sends an update to the data gatherer at the simulator site, which
informs the simulator to regenerate the traffic in simulation.

7.2. Preliminary Experiments

We conduct experiments to validate the accuracy of the symbiotic approach using real
applications and real protocols. We compare the delay and throughput produced by
the real applications running in symbiosim with those produced by applications with
similar characteristics running entirely in simulation. We make sure that simulated
applications behave similar to their real counterparts, such as by using the same TCP
variant with the same configuration parameters. The results would demonstrate the
feasibility of the symbiotic approach in handling real-world scenarios.

We conduct this test using a simple yet representative network topology, called park-
ing lot network, as shown in Figure 10. The network consists of six end hosts connected
by four routers. The network is a classic topology often used in the literature for testing
various network congestion control protocols. As described momentarily, one can easily
create multiple bottlenecks in the network and cause cross-traffic interactions between
different flows.

For the experiment, we designate two end hosts (at the bottom on either side) to be
the emulated hosts. In the downscaled topology, the two emulated hosts are connected
by one network segment consisted of five links. The emulation system is instantiated on

3If the simulator is run in parallel, there will be one data gatherer associated with each parallel simulation
instance.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

Symbiotic Network Simulation and Emulation 2:19

Fig. 10. Baseline network for validation.

Fig. 11. Round-trip delay. Fig. 12. Received data.

three physical machines: one for each of the two emulated hosts, and a third as a delay
node running dummynet for link emulation and connecting the other two machines
running as emulated hosts. The three machines are allocated using ProtoGENI, which
are specified to run the latest Linux OS directly on the physical nodes. The emulated
hosts use the default TCP version (CUBIC) to communicate with each other. Since
the simulation workload is relatively moderate for this experiment, we instantiate the
simulation system directly on the same delay node. We make sure that the network
simulator uses the same TCP version for communication between the end hosts.

In the experiment, we direct five TCP flows, each containing multiple simultaneous
TCP sessions. Flow 1 is an emulated flow, which has only one TCP session generated
by a pair of Java client/server applications that use HTTP to transfer a large data file
over the network. The data transfer will span the entire experiment, which lasts for
60 seconds. The other four flows are all simulated flows. We carefully set the start time
and the size of the data transfers so that we can create separate and diverse congestion
scenarios in the network throughout the experiment. Flow 2 contains 5 simultaneous
TCP sessions, each transferring 0.5MB of data and all starting at 10 seconds. At 30
seconds, Flow 3 starts with another 5 TCP sessions, each transferring 2MB of data.
Before the transfers finish, we start Flow 4, which contains 10 TCP sessions, each
transferring 1MB of data. We intentionally make Flow 3 and Flow 4 overlap, thus
creating two bottlenecks in the network at the same time. Finally, at 50 seconds, Flow
5 starts with another 5 TCP sessions, each transferring 1MB of data.

Figure 11 shows the measured round-trip times (RTTs) between the two emulated
hosts, both from symbiosim and pure simulation. For symbiosim, we also run ping on
the emulated hosts together with the HTTP application so that we have the RTT at each
second during the experiment. For pure simulation, we simply extract the RTT from

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

2:20 M. A. Erazo et al.

Fig. 13. Multipath routing infrastructure.

the trace files generated by the simulated TCP protocol. The plot shows the symbiosim
results from running the same experiment 15 times. We also plot the average RTT from
symbiosim and pure simulation. We see that the delays from symbiosim closely follow
what is expected from the simulation. The average RTT from simulation is 148ms
and that from symbiosim is 152ms; the error is about 3%. We also observe that at the
congestion points we created in the simulation, symbiosim is able to react promptly, as
we can see the delays for the emulated flows jump accordingly due to the congestion.

Figure 12 plots the sequence numbers (in bytes) of the received TCP segments by
the emulated host over time. Again, we show the symbiosim results from the 15 runs,
along with the averages from both symbiosim and pure simulation. We see that the
average sequence number history from symbiosim is almost indistinguishable from
that of simulation. The maximum sequence number that we collect at the end of the
experiment in simulation is 20,843,961; symbiosim gets 20,748,458. The error is only
0.5%. These results confirm that our symbiotic approach can accurately emulate the
communication path between the target applications.

8. A CASE STUDY

Recent research shows that multipath routing can be used to improve data transport
over the Internet by taking advantage of its path diversity [Han et al. 2006; Raiciu
et al. 2009]. In this section, we present a performance study using symbiosim to test
a multipath protocol as an example to demonstrate the use of the symbiotic approach
for evaluating new network protocols and applications.

Our protocol uses source routing. Each end host can choose multiple paths to route
traffic from source to destination based on information from dedicated access routers.
These dedicated access routers provide multipath services to subscribed end hosts by
informing them of the availability of multiple paths to a given destination and providing
periodic updates about these paths, including the current bandwidth, RTT, and loss
rate. This information will be used by the end host to determine how to transport data
to maximize its target utility function.

An example is shown in Figure 13. A sender is subscribed to the multipath service
and therefore receives periodic updates about the three alternative paths to a cho-
sen receiver. Each alternative path is depicted in the figure as a separate cloud, which
represents the set of network links on the path from the sender’s access router to the re-
ceiver’s access router. Our multipath transport protocol at the end host is implemented
as a Java application using TCP. At any moment, the sender can establish multiple
TCP sessions with the receiver, each using a different network path. There are different

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

Symbiotic Network Simulation and Emulation 2:21

Fig. 14. Instantaneous throughput of the multipath algorithms.

ways to implement source routing, including using label switching or OpenFlow. For
simplicity, in our implementation, we only emulate the effect of source routing by
designating separate receivers with distinct IP addresses and routing paths.

We conduct an experiment to investigate the effectiveness of multipath selection
algorithms—whether they can quickly find a high-capacity alternative path when fail-
ure occurs. We use a simple network topology with one sender and one receiver with
three distinct paths between them (as shown in Figure 13). The three alternative paths
all have the same bandwidth of 100Mbps. Without other traffic, the RTTs for the three
alternative paths are 5ms, 10ms, and 50ms, respectively. The access link between the
sender and its access router is set to have 50Mbps bandwidth and 1ms delay. The access
link for the receiver has infinite bandwidth and zero delay. The emulation system is
instantiated on three physical machines: two emulated hosts for the sender and the
receiver, and one delay node running dummynet connecting the two emulated hosts.

We evaluate three multipath selection algorithms. For the experiment, the sender
sends a large data file to the receiver over two TCP connections simultaneously. All
algorithms choose the first two paths with the fewest RTTs in the beginning. The first
algorithm is static; the selection does not change throughout the data transmission.
The second algorithm dynamically selects the two paths with the least loss rate. The
third algorithm selects the two paths with the most available bandwidth.

The data transfers start immediately at the beginning of the experiment. At 20 sec-
onds, we artificially create network congestion by initiating 10 TCP flows on each of
the three paths in simulation. Figure 14 shows the instantaneous throughput (mea-
sured at 1 second intervals) for the three multipath selection algorithms together with
95% confidence intervals corresponding to 20 trials. We observe that the static path
selection algorithm is not able to adapt to the changes in the network condition. The
throughput drops significantly starting at 20 seconds due to the congestion. Both loss-
and bandwidth-based path selection algorithms can improve the situation. The loss-
based algorithm achieves less throughput and does not seem to reach stability (which
persists beyond the 40 seconds shown in the figure). After investigation, we found that
the loss-based algorithm constantly changes its decision on second data path for data
forwarding. Path switching introduces overhead due to TCP ramping up during slow
start.

Our study here is preliminary. One would create more realistic network topologies
and use more complex network background traffic to carefully test the applications.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

2:22 M. A. Erazo et al.

However, it is sufficient to show that our symbiotic simulation and emulation approach
can provide the mechanism for one to evaluate the implementation of new protocols
and applications under diverse simulated network conditions.

9. RELATED WORK

In biology, symbiosis is defined as the mutually beneficial relationship between two or
more different organisms. Symbiotic simulation can be defined as “one that interacts
with the physical system in a mutually beneficial way” [Fujimoto et al. 2002].

There are two promising areas that combine network simulation and emulation.
On-line simulation uses simulation as an integrated service for real-time network
management with the goal of improving network performance via network planning,
monitoring, parameter tuning, and traffic engineering (e.g., Szymanski et al. [2002]
and Ye et al. [2001]). Real-time simulation performs simulation in real time so that
the target virtual network can interact with real network entities (e.g., Ahrenholz
et al. [2008], Fall [1999], Liljenstam et al. [2005], Liu et al. [2009], Nicol et al. [2011],
Simmonds et al. [2000], and Zhou et al. [2004]).

ROSENET [Gu 2007] is an early attempt to promote the symbiotic relationship
between simulation and emulation. It combines a high-performance simulator and a
low-fidelity emulator running at separate locations. The simulator continuously up-
dates the emulator with link statistics, including packet delay, jitter, and loss. The
emulator also continuously updates the simulator with a summary of the real traf-
fic. ROSENET achieved its initial success, which has inspired our work. However, it
is shown to be capable of emulating only a single bottleneck link and also only ap-
plications that generate nonresponsive traffic (i.e., UDP applications). Our work has
improved over ROSENET in terms of handling large and complex networks of arbitrary
topology, as well as in terms of dealing with elastic TCP flows.

Network emulators, such as dummynet [Rizzo 1997], ModelNet [Vahdat et al. 2002],
NIST Net [Carson and Santay 2003], and EmuLab [White et al. 2002], test real appli-
cations with well-orchestrated network conditions. For example, dummynet works by
forwarding the network packets through a set of pipes that approximate the behavior
of the corresponding network queues. Each pipe focuses only on a single link. Our work
extends the network emulators to deal with network-wide behaviors. In addition, our
work incorporates simulation that brings the flexibility of including different abstract
models.

Topology downscaling is based on the observation that only congested links intro-
duce sizable queuing delays and packet losses [Barakat et al. 2002; Fraleigh et al.
2003a, 2003b; Papagiannaki et al. 2002]. In other words, uncongested links, especially
those with capacities large enough to simultaneously carry many flows, are somewhat
transparent to the packets traversing them [Eun and Shroff 2003]. Papadopoulos et al.
[2006] proposed a method that aims at downscaling network topology by removing
the uncongested links, retaining only the congested ones, and compensating for the
removed links with additional delays. The problem with their approach is that the
bottleneck links have to be known in advance. Although static analysis may help to
reveal the potential congestion points in the network, the selection can be too general
for emulation to achieve an effective model reduction.

Sanaga et al. [2009] proposed a method to approximate the entire network path with
a single link by modeling the link capacity and the available bandwidth separately. The
method calculates the available bandwidth using nonresponsive traffic (with constant
bit rate). Although this approach can give a good approximation of the average behavior,
it does not provide sufficient granularity to accurately capture the interaction between
the simulated and emulated flows as in our case. Modeling the traffic intensity simply
as nonresponsive flows is also unfair to TCP.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

Symbiotic Network Simulation and Emulation 2:23

Symbiotic simulation is also referred to as the Dynamic Data-Driven Application
System (DDDAS) in a larger context that has broadly been applied in the areas of
manufacturing, business, system engineering, civil engineering, biology, social science,
and many other disciplines. In DDDAS, simulation and the physical system form a
symbiotic feedback control system, whereas a simulation can dynamically incorporate
data from the physical system so that it can improve the measurement process or
exercise more precise control of the physical system [DDDAS 2014].

10. CONCLUSIONS

In this article, we have proposed a symbiotic simulation and emulation approach that
provides a new method for evaluating complex network systems, where large-scale net-
work transactions can be modeled using simulation, and real application instances can
run directly in real-machine environments and communicate through emulated paths
reflecting the simulated traffic conditions of the large-scale network. More specifically,
we have proposed a model downscaling technique that can significantly reduce the com-
putational complexity of the original large-scale model to enable high-capacity traffic
emulation. To efficiently synchronize the full-scale simulated network model and the
downscaled emulated network model, we have introduced a queuing model so that
emulation can reproduce the same simulated traffic conditions between the target ap-
plications. We also have introduced a technique for efficiently regenerating the same
emulated traffic behavior in simulation by capturing the target applications’ traffic
demand and then creating the traffic flows at the corresponding hosts in simulation.
Extensive experiment results using simulation and with a prototype implementation
of the symbiotic approach show that our method is able to produce accurate results.

It is important to recognize the limitations of our current approach. First, the model
downscaling method assumes fixed network topologies, as well as stable traffic rout-
ing and forwarding. As such, it would limit this method to studies of infrastructure
networks where dynamic routing cannot the be primary objective of the studies. The
method also cannot be easily extended to studying wireless networks, where network
connectivity may constantly change as a result of node mobility or frequent shifts in
the wireless channel properties. Second, our network queuing model is based on first-
come-first-serve scheduling, which may be questionable for today’s popular network
switches that adopt flow-level QoS or fair queuing policies. In this aspect, the recent
work by Jin and Nicol [2010] may provide a valuable direction for incorporating more
diverse and realistic switch scheduling policies in our symbiotic approach. Third, the
current symbiotic approach focuses only on flow rates and their effect on network
queuing (e.g., throughput, delay, and packet loss). In particular, it cannot deal with the
content. Incorporating content-based traffic models may provide significant value for
cybersecurity applications, such as studying distributed intrusion detection techniques.
We defer that to future work.

For immediate future work, we are developing a full-scale implementation of the
symbiosim testbed. We will investigate methods for further scaling up the system,
such as instantiating the emulation system on virtual machines, similar to what has
been done for real-time network simulation [Liu et al. 2009; Van Vorst et al. 2011a].
Once we have a full-scale implementation, we plan to conduct extensive evaluations
on the performance and capabilities of our approach in the context of real large-scale
network applications.

REFERENCES

Jeff Ahrenholz, Claudiu Danilov, Thomas R. Henderson, and Jae H. Kim. 2008. CORE: A real-time network
emulator. In Proceedings of the IEEE Military Communications Conference (MILCOM’08). 1–7.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

2:24 M. A. Erazo et al.

Chadi Barakat, Patrick Thiran, Gianluca Iannaccone, Christophe Diot, and Philippe Owezarski. 2002. A
flow-based model for Internet backbone traffic. In Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet Measurement (IMW’02). 35–47.

Paul Barford and Larry Landweber. 2003. Bench-style network research in an Internet instance laboratory.
ACM SIGCOMM Computer Communication Review 33, 3, 21–26.

Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed Helmy, Polly Huang, Steven
McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu. 2000. Advances in network simulation. IEEE
Computer 33, 5, 59–67.

CAIDA. 2011. The CAIDA Anonymized Internet Traces 2011 Dataset. Retrieved May 28, 2015, from
http://www.caida.org/data/passive/passive_2011_dataset.xml.

Mark Carson and Darrin Santay. 2003. NIST Net: A Linux-based network emulation tool. SIGCOMM
Computer Communication Review 33, 3, 111–126.

Xinjie Chang. 1999. Network simulations with OPNET. In Proceedings of the 1999 Winter Simulation Con-
ference, Vol. 1. 307–314.

DDDAS. 2014. Dynamic Data-Driven Application Systems Info Cybernetics. Retrieved May 28, 2015, from
http://www.dddas.org/.

Miguel A. Erazo, Yue Li, and Jason Liu. 2009. SVEET! A scalable virtualized evaluation environment for
TCP. In Proceedings of the 5th International Conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities and Workshops (TRIDENTCOM’09). 1–10.

Do Young Eun and Ness B. Shroff. 2003. Simplification of network analysis in large-bandwidth systems. In
Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM’03).

Kevin Fall. 1999. Network emulation in the Vint/NS simulator. In Proceedings of the 4th IEEE Symposium
on Computers and Communications. 244–250.

Chuck Fraleigh, Sue Moon, Bryan Lyles, Chase Cotton, Mujahid Khan, Deb Moll, Rob Rockell, Ted Seely, and
Christophe Diot. 2003a. Packet-level traffic measurements from the Sprint IP backbone. IEEE Network
17, 6, 6–16.

Chuck Fraleigh, Fouad Tobagi, and Christophe Diot. 2003b. Provisioning IP backbone networks to support
latency sensitive traffic. In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’03).

Richard Fujimoto, Dell Lunceford, Ernest Page, and Adelinde M. Uhrmacher. 2002. Grand Challenges for
Modeling and Simulation. Technical Report 350. Schloss Dagstuhl.

Yan Gu. 2007. ROSENET: A Remote Server-Based Network Emulation System. Ph.D. Dissertation. Georgia
Institute of Technology.

Huaizhong Han, Srinivas Shakkottai, Christopher V. Hollot, Rayadurgam Srikant, and Don Towsley. 2006.
Multi-path TCP: A joint congestion control and routing scheme to exploit path diversity in the Internet.
IEEE/ACM Transactions on Networking 14, 6, 1260–1271.

Mark Handley, Eddie Kohler, Atanu Ghosh, Orion Hodson, and Pavlin Radoslavov. 2005. Designing ex-
tensible IP router software. In Proceedings of the 2nd Symposium on Networked Systems Design and
Implementation (NSDI’05). 189–202.

Dong Jin and David M. Nicol. 2010. Fast simulation of background traffic through fair queueing networks.
In Proceedings of the Winter Simulation Conference. 2935–2946.

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. 2000. The Click modular
router. ACM Transactions on Computer Systems 18, 8, 263–297.

Michael Liljenstam, Jason Liu, David M. Nicol, Yougu Yuan, Guanhua Yan, and Chris Grier. 2005. RINSE:
The real-time interactive network simulation environment for network security exercises. In Proceedings
of the 19th Workshop on Parallel and Distributed Simulation (PADS’05). 119–128.

Jason Liu. 2008. A primer for real-time simulation of large-scale networks. In Proceedings of the 41st Annual
Simulation Symposium (ANSS’08). 85–94.

Jason Liu. 2013. Real-time scheduling of logical processes for parallel discrete-event simulation. In Proceed-
ings of the Winter Simulation Conference. 2959–2971.

Jason Liu, Yue Li, Nathanael Van Vorst, Scott Mann, and Keith Hellman. 2009. A real-time network simu-
lation infrastructure based on OpenVPN. Journal of Systems and Software 82, 3, 473–485.

Xin Liu, Huaxia Xia, and Andrew A. Chien. 2003. Network emulation tools for modeling grid behavior.
In Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGrid 03).

David M. Nicol, Dong Jin, and Yuhao Zheng. 2011. S3F: The scalable simulation framework revisited. In
Proceedings of the Winter Simulation Conference. 3288–3299.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

http://www.caida.org/data/passive/passive_2011_dataset.xml
http://www.dddas.org/

Symbiotic Network Simulation and Emulation 2:25

Open vSwitch. 2013. An Open Virtual Switch. Retrieved May 28, 2015, from http://openvswitch.org/.
Fragkiskos Papadopoulos, Konstantinos Psounis, and Ramesh Govindan. 2006. Performance preserving

topological downscaling of Internet-like networks. IEEE Journal on Selected Areas in Communications
24, 12, 2313–2326.

Konstantinos Papagiannaki, Sue Moon, Chuck Fraleigh, Patrick Thiran, Fouad Tobagi, and Christophe Diot.
2002. Analysis of measured single-hop delay from an operational backbone network. In Proceedings of
the 21st Annual Joint Conference of the IEEE Computer and Communications Society (INFOCOM’02).

Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. 2002. A blueprint for introducing dis-
ruptive technology into the Internet. In Proceedings of the 1st Workshop on Hot Topics in Networking
(HotNets-I’02).

PRIME. 2013. Parallel Real-Time Immersive Network Modeling Environment. Retrieved May 28, 2015, from
https://www.primessf.net/prime/.

ProtoGENI. 2013. ProtoGENI. Retrieved May 28, 2015, from http://www.protogeni.net/.
Costin Raiciu, Damon Wischik, and Mark Handley. 2009. Practical Congestion Control for Multipath Trans-

port Protocols. Technical Report. University College of London.
Luigi Rizzo. 1997. Dummynet: A simple approach to the evaluation of network protocols. ACM SIGCOMM

Computer Communication Review 27, 1, 31–41.
Pramod Sanaga, Jonathon Duerig, Robert Ricci, and Jay Lepreau. 2009. Modeling and emulation of Internet

paths. In Proceedings of the 6th Conference on Networked Systems Design and Implementation (NSDI’09).
199–212.

Rob Simmonds, Russell Bradford, and Brian Unger. 2000. Applying parallel discrete event simulation to net-
work emulation. In Proceedings of the 14th Workshop on Parallel and Distributed Simulation (PADS’00).
15–22.

Boleslaw K. Szymanski, Adnan Saifee, Anand Sastry, Yu Liu, and Kiran Madnani. 2002. Genesis: A system for
large-scale parallel network simulation. In Proceedings of the 16th Workshop on Parallel and Distributed
Simulation (PADS’02). 89–96.

Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostić, Jeff Chase, and David Becker.
2002. Scalability and accuracy in a large-scale network emulator. ACM SIGOPS Operating Systems
Review 36, SI, 271–284.

Nathanael Van Vorst, Miguel Erazo, and Jason Liu. 2011a. PrimoGENI: Integrating real-time network
simulation and emulation in GENI. In Proceedings of the 2011 IEEE Workshop on Principles of Advanced
and Distributed Simulation (PADS’11). 1–9.

Nathanael Van Vorst, Ting Li, and Jason Liu. 2011b. How low can you go? Spherical routing for scalable
network simulations. In Proceedings of the 19th IEEE Annual International Symposium on Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’11). 259–268.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad
Barb, and Abhijeet Joglekar. 2002. An integrated experimental environment for distributed systems
and networks. In Proceedings of the 5th Symposium on Operating Systems Design and Implementation
(OSDI’02). 255–270.

Tao Ye, Shivkumar Kalyanaraman, David Harrison, Biplab Sikdar, Bin Mo, Hema Tahilramani, Ken Vastola,
and Boleslaw Szymanski. 2001. Network management and control using collaborative on-line simula-
tion. In Proceedings of the IEEE International Conference on Communications (ICC’01).

Yin Zhang and Nick Duffield. 2001. On the constancy of Internet path properties. In Proceedings of the 1st
ACM SIGCOMM Workshop on Internet Measurement (IMW’01). 197–211.

Junlan Zhou, Zhengrong Ji, Mineo Takai, and Rajive Bagrodia. 2004. MAYA: Integrating hybrid network
modeling to the physical world. ACM Transactions on Modeling and Computer Simulation 14, 2, 149–
169.

Received January 2014; revised December 2014; accepted January 2015

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 2, Publication date: June 2015.

http://openvswitch.org/
https://www.primessf.net/prime/
http://www.protogeni.net/

