
Z

Cluster-Based Spatio-Temporal Background Traffic Generation for
Network Simulation

TING LI and JASON LIU, Florida International University

To reduce the computational complexity of large-scale network simulation, one needs to distinguish fore-
ground traffic generated by the target applications one intends to study, from background traffic that repre-
sents the bulk of the network traffic generated by other applications. Background traffic competes with fore-
ground traffic for network resources and consequently plays an important role in determining the behavior
of network applications. Existing background traffic models either operate only at coarse time granularity
or focus only on individual links. There is little insight on how to meaningfully apply realistic background
traffic over the entire network. In this article, we propose a method for generating background traffic with
spatial and temporal characteristics observed from real traffic traces. We apply data clustering techniques to
describe the behavior of end hosts as a function of multi-dimensional attributes and group them into distinct
classes, and then map the classes to simulated routers so that we can generate traffic in accordance with the
cluster-level statistics. The proposed traffic generator makes no assumption on the target network topology.
It is also capable of scaling the generated traffic so that the traffic intensity can be varied accordingly in
order to test applications under different and yet realistic network conditions. Experiments show that our
method is able to generate traffic that maintains the same spatial and temporal characteristics as in the
observed traffic traces.
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1. INTRODUCTION
The ability to generate representative traffic is crucial for network simulators, emu-
lators, and other empirical testbeds, to effectively evaluate next-generation network
protocols and applications. It is a nontrivial task to model Internet traffic, given the
scale and diversity of today’s applications and the sophistication of user behaviors.

In order to reduce the computational complexity of network simulation, we need to
make a distinction between the foreground traffic, which is generated by the target
applications the researchers intend to study and therefore must be simulated with
high fidelity, and the background traffic, which represents the bulk of the network
traffic generated by other applications that do not require detailed models. Although
the applications that produce the background traffic are of secondary interest, their
behavior has a significant impact on the target applications, since the background
traffic competes with the foreground traffic for network resources and therefore can
drastically affect the behavior of the target applications.

Due to the diversity and complexity of today’s network traffic, there is little agree-
ment in the community on the proper use of background traffic in network experiments
and performance evaluation studies. We can divide the existing traffic models into
spatial and temporal models. Spatial models distribute traffic onto the network links
based on traffic matrices. They generally focus on aggregate traffic intensity (rather
than individual flows or packets) and can only deal with traffic variations at coarse
time scales (e.g., in minutes). As a result, they may not be able to accurately capture
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the interaction with the foreground traffic, represented normally as individual pack-
ets or flows. Temporal models are based on packet traces collected for individual links;
they can generate traffic as individual flows or packets, and therefore are able to cap-
ture the interaction with the target applications more accurately. Temporal models,
however, can only work with individual links or paths; they are not able to represent
the spatial distribution of traffic over the entire network. To the best of our knowledge,
there is no existing background traffic model that can produce network-wide traffic
on arbitrary network topology and simultaneously maintain the spatial and temporal
characteristics of the observed Internet traffic.

In this article, we aim to provide a spatio-temporal background traffic generator that
can be easily applied for network studies. We expect the traffic generator should meet
the following criteria:

— Spatio-temporal correlation: The traffic generator should jointly consider both spatial
and temporal structures; that is, the generator not only needs to reproduce the bursty
traffic behavior as observed on individual links and/or paths, but also can reasonably
place traffic on the target network topology so as to capture the spatial distribution
of traffic covering the entire network.

— Realism: The traffic generator should be based on real traffic traces and traffic ma-
trices, whenever available, in order to accurately represent the global Internet traffic
behavior that constantly changes over time.

— Flexibility: The traffic generator should be flexible: the generator needs to produce
traffic with various traffic conditions, for different test scenarios, and on arbitrary
network topologies, in order to evaluate the target applications. That is, the traffic
generator needs to provide the necessary “control knobs”—the ability to tune certain
model parameters—while keeping important spatial and temporal traffic character-
istics invariant in order to maintain a good level of realism.

To derive the spatio-temporal background traffic model, we start by analyzing the
traffic behavior observed from the real network (i.e., using traffic traces). We adopt
clustering techniques to classify the traffic in order to efficiently and effectively dis-
cover the underlying traffic patterns. More specifically, we describe the traffic as a func-
tion of multi-dimensional attributes and then apply a clustering algorithm to group
the end hosts according to their contribution in the observed traffic. Different from
other traffic clustering approaches, we carefully choose the features that define the
clusters to facilitate traffic generation. The resulting traffic classes are then mapped
onto a given network topology. This is achieved by first stochastically determining an
origin-destination (OD) traffic matrix for the given network, and then by overlaying
the traffic sources and destinations belonging to the traffic classes onto the network
according to the traffic matrix. Once mapped, the traffic sources and destinations are
able to populate the network with traffic according to a stochastic arrival process.

The novelty of our approach can be summarized as follows. Our method uses the
clustering technique for background traffic modeling and simulation. By classifying
traffic using the multi-dimensional attributes, we are able to effectively discover and
succinctly summarize the network traffic patterns using cluster-level characteristics.
By judiciously distributing the cluster-level traffic sources and destinations, we are
able to spread the traffic across the entire network while maintaining the underly-
ing spatial structure. By conducting the traffic flows in accordance with cluster-level
statistics, we are able to maintain the temporal structure of the traffic flowing through
the network links. By providing the mechanism for scaling the traffic intensity level
on the network links while maintaining the same spatial and temporal characteristics,
we are able to test applications under diverse and yet realistic traffic conditions.
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We conducted experiments to validate our cluster-based method for spatio-temporal
background traffic generation. The results show that the generated traffic is able to
maintain the spatial structure in terms of link utilization and traffic distribution. It
also maintains the temporal structure; the generated traffic is statistically similar to
the original traffic traces. The proposed method is not limited to network simulation;
we expect that our spatio-temporal background traffic generation method can be ap-
plied for network emulation as well as in empirical studies. For example, using the
symbiotic simulation method [Erazo and Liu 2013], one can use simulation to gener-
ate spatio-temporal background traffic to influence the foreground traffic generated
by real applications running in an emulated environment. In this article, however, we
focus only on the simulation aspects.

The rest of the article is organized as follows. We describe the related work in Sec-
tion 2. In Section 3, we provide an overview of our cluster-based method for spatio-
temporal background traffic generation. In the subsequent sections, we describe the
details of the proposed method. We conducted experiments to validate our model; the
results are presented in Section 7. In Section 8, we outline our conclusion and discuss
future work.

2. BACKGROUND
In this section we first review existing traffic models, including temporal, spatial, and
spatio-temporal models. We then provide a brief summary of related work in traffic
classification. Finally we describe the current state of using background traffic in net-
work studies by conducting a survey for papers in SIGCOMM 2007-2013.

2.1. Existing Traffic Models
There are many existing efforts for network traffic generation. We divide them into
temporal models, spatial models, and spatio-temporal models.

Temporal models include detailed packet traffic generators, such as Harpoon [Som-
mers and Barford 2004], NTools [Vegh 2013], Surge [Barford and Crovella 1998],
Swing [Vishwanath and Vahdat 2006], and Tmix [Weigle et al. 2006]. These models
analyze existing packet traces and subsequently generate traffic at the packet level.
An important limitation of temporal models is that they focus only on an individual
link (such as the bottleneck link in a dumbbell topology), or a specific path between two
end hosts. The traffic cannot be extended easily to cover the entire network in order to
be used as background traffic for studying applications distributed over an arbitrary
network topology. It should be noted that generating traffic packet by packet is accu-
rate, but can also be computationally expensive for background traffic generation in
simulation. Background traffic represents the bulk of the network traffic and yet it is
not the focus of a simulation study. To reduce the computational complexity, abstract
models can be used to describe traffic at the flow level using fluids (e.g., [Liu et al.
2001; Misra et al. 2000; 2003; Kesidis et al. 1996; Nicol 2001; Nicol and Yan 2004; Ahn
and Danzig 1996; Guo et al. 2000; Li et al. 2013]).

Spatial models distribute traffic based on traffic matrices. Traffic matrix represents
the aggregate volume of traffic flowing between all origin-destination (OD) pairs within
a certain time interval. A traffic matrix is usually used as input for network design or
for network management, such as capacity planning and traffic engineering. There
has been extensive work on estimating the traffic matrix. The gravity model assumes
that the traffic between an origin-destination pair is proportional to the total traffic
from the source node to the destination node [Zhang et al. 2003a]. The main drawback
is that the model assumes independence between the source and destination. To solve
this problem, generalized gravity models extend the gravity model by separating traffic
into classes and applying the gravity model on each class of traffic [Zhang et al. 2003b;
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2005b]. The discrete choices model (DCM) is also a variation of the gravity model,
which is based on the choice models for decision behavior, where the ingress nodes
make decisions on the traffic volume and traffic destination based on user behavior
and network configuration [Medina et al. 2002]. The independent connections model
(ICM) focuses on connections between the traffic initiators and traffic responders; it
considers the forward traffic proportion, the activity level of the users at a node, and
the preference of a node as the peer of a connection, assuming independence between
the connections [Erramilli et al. 2006]. Both DCM and ICM require a large number of
parameters to achieve accuracy. The low-rank model provides a simpler and yet more
general model, which can be treated as a weighted sum of gravity models [Bharti et al.
2010]. All spatial models above focus only on the spatial distribution of traffic; the
resulting traffic intensity remains constant during a given time interval, the size of
which is usually predetermined according to the measurement requirements and is
normally in minutes or larger. At this time granularity, one cannot accurately study
the effect of background traffic on the individual packets generated by the foreground
applications.

Spatio-temporal models consider both temporal and spatial structures. There are
methods for traffic matrix estimation that also focus on time dependent properties.
Although we treat them here as spatio-temporal models, they are not really concerned
with the spatio-temporal correlations of the traffic. Roughan et al. [2002] proposed a
temporal model for the OD flows traversing backbone routers. The traffic intensity
is modeled with four components: a long-term trend that captures the overall traffic
behavior over a long period of time, a seasonal (cyclical) component that describes any
periodic behavior in the traffic, a random fluctuation component that models the small
fluctuation of the traffic, and an anomaly component that models the large variation
of traffic from anomalies. Fourier analysis can be used to capture the periodic nature
of the OD flows by representing the cyclical signal with a small number of Fourier
coefficients [Tune and Roughan 2013]. Wavelets are also used to capture both short-
range and long-range dependencies [Papagiannaki et al. 2003; Abry and Veitch 1998].
Principal components analysis (PCA) can be used to describe the OD flows by using
a small number of “eigenflows” [Lakhina et al. 2004]. All these methods are data-
driven methods and rely heavily on measurements. However, they deal with aggregate
flows, which may not be able to achieve the level of accuracy necessary to capture the
interactions with the foreground traffic. The derived temporal characteristics of the
traffic is also independent of the spatial distribution.

There are two recent papers on the spatio-temporal correlation. Zhang et al. [2009]
proposed a method that represents the traffic matrix by the low-rank approximation
and uses a rank model to approximate both spatial and temporal correlations of the
traffic matrix. The drawback of this model is that it is difficult to interpret the model
parameters; they are not directly related to network aspects or user behaviors. This
also makes it difficult to tune the model for simulation purposes. Sommers et al. [2011]
proposed an interesting method for network-wide flow record generation. The method
is designed to generate representative benign and anomalous traffic, especially use-
ful for anomaly detection. It builds on the Harpoon traffic generator [Sommers and
Barford 2004] to allocate sources and destinations for traffic flows. Harpoon assigns
weights to the IP addresses from a selection pool; the weights can be determined by
the empirical distribution observed from the real network. The method proportionally
selects the IP addresses according to the number of connections they involve, however,
it does not consider the spatial distribution of the IP addresses and the connectivity
between the IP addresses. In this case, for example, the method may not be able to
reflect the existence of hotspots in the network. Comparatively, our method takes user
behavior, node distribution, network connectivity, and flow-level statistics into consid-
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Table I: SIGCOMM papers in different categories
Year R S E R+S S+E S+R+E other total/yr
2013 12 8 1 6 1 0 9 37
2012 5 5 1 7 0 0 13 31
2011 8 4 0 5 0 0 12 29
2010 8 2 1 9 1 0 9 30
2009 12 2 1 5 0 0 8 28
2008 14 5 0 7 1 0 9 36
2007 13 5 1 7 0 1 8 35
total 72 31 5 46 3 1 68 226

eration. As a result, we expect our method is able to capture the spatial and temporal
correlations of the traffic over the entire network.

2.2. Traffic Classification
Our method uses clustering techniques to classify traffic. There has been extensive
work on traffic classification using machine learning techniques. We roughly group the
traffic classification methods into three types. The first type of methods (e.g., [Roughan
et al. 2004; McGregor et al. 2004]) classify traffic based solely on flow-level statistics,
such as traffic volume and packet size, without considering the end-user behavior. The
second type of methods (e.g., [Karagiannis et al. 2005; Xu et al. 2005]) classify traf-
fic based on end-user behavior but remain indifferent to network dynamics (such as
network congestion and delays). The third type of methods (e.g., [Wei et al. 2006])
consider both end-user behaviors and network dynamics for classification. Our traffic
model incorporates traffic classification belonging to this category.

Most existing traffic classification methods are used for analyzing traffic and detect-
ing traffic anomalies, not for traffic generation. Valgenti and Kim [2012] proposed a
traffic content generative mode that uses clustering techniques to determine the role of
end hosts as either content providers or content consumers, and in doing so can gener-
ate traffic representative of content distribution over the network. Content generation
is important for applications such as intrusion detection; however, their method does
not consider traffic intensity, which is an important aspect for background traffic. In
this study, we focus on workload-based background traffic generation. Content-based
traffic generation needs to be application-specific; we defer that to future work.

2.3. Use of Background Traffic in Network Experiments
To better understand the current use of background traffic in network studies, we con-
ducted a survey of the SIGCOMM papers in the last seven years (2007-2013). We cat-
egorize the papers that involve experiments with infrastructural networks according
to their evaluation methods, which include real testbeds (R), simulation (S), emulation
(E), or a combination of them. Table I shows the results. The “other” category con-
sists of work that does not involve experiments with infrastructure networks, such as
wireless communications, or includes only theoretical analyses.

We observe that the use of real testbeds and simulation accounts for a large propor-
tion of the evaluative work. They are often used together with complementary roles.
In a common scenario, the researchers use simulation to evaluate key functions under
various network conditions, and then use real testbeds, such as PlanetLab or other
controlled platforms, including lab machines, university networks, and enterprise net-
works, to test real-world operations. In another common scenario, the researchers use

ACM Transactions on Modeling and Computer Simulation, Vol. X, No. Y, Article Z, Publication date: 2014.



Z:6 T. Li and J. Liu

Table II: Use of Synthetic Background Traffic in Some SIGCOMM Papers
Paper Network Topologies Traffic Types
probabilistic early response TCP simple topologies with single long-lived TCP
[Bhandarkar et al. 2007] and multiple bottlenecks
service differentiation simple topologies with single long-lived TCP
[Podlesny and Gorinsky 2008] and multiple bottlenecks sampled flows
scalable Ethernet architecture campus network trace playback
[Kim et al. 2008]
network measurement simple topology with single CBR
[Papageorge et al. 2009] bottleneck (dumbbell) traffic generator
network-wide redundancy Rocketfuel topologies gravity model
elimination [Anand et al. 2009]
Denial of service simple topologies with single long-lived TCP
[Liu et al. 2010] and multiple bottlenecks sampled flows
flow-level measurement simple topology with single sampled flows
[Lee et al. 2010] bottleneck (dumbbell) traffic generator
route reconfiguration RocketFuel topologies gravity model
[Wang et al. 2010] US-ISP, GT-ITM, Abilene trace playback
protocol manipulation attacks simple topology with single long-lived TCP
[Kothari et al. 2011] bottleneck (dumbbell)
flexible transport protocol simple topologies with single sampled flows
[Han et al. 2013] and multiple bottlenecks

a real testbed to conduct small-scale studies, and then resort to simulation for large-
scale experiments.

In both cases, simulation offers unique capabilities for network experimentation.
Next, we specifically focus on simulation studies that require network traffic for eval-
uation. Table II lists the papers that use synthetic network traffic in experimental
studies. We observe that various background traffic models have been used, including
long-lived TCP flows, constant-bit-rate (CBR) traffic, packet trace playback, sampled
flows, and traffic generators. Apparently long-lived TCP and CBR are limited in terms
of representing the temporal behavior of the Internet traffic, such as traffic burstiness
caused by long-term dependencies. In order to better capture the temporal structure of
the traffic demand, people resort to either using direct playback of the packet traces,
or applying empirical sampling of the packet traces to obtain the random flow inter-
arrival times and flow lengths (we name this method as “sampled flows” in the table).

Only a few studies involve existing traffic generators, and most of them are limited
to simple network topologies, such as dumbbell. For studies that require more sophis-
ticated network topologies, there are no commonly adopted methods for obtaining the
background traffic. Anand et al. [2009] applied the gravity model to estimate traffic
matrix at PoP-level (they use the RocketFuel ISP PoP-level topologies [Spring et al.
2004]), assuming the traffic is uniformly distributed among the access routers within
each PoP. Wang et al. [2010] actually used the CAIDA trace to reproduce the packet-
level traffic flows. However, the derived temporal behavior of their traffic would be
independent of the spatial distribution.

From this survey, we see that there is a significant lack of network-scale background
traffic models in network experimentation.

3. OVERVIEW OF CLUSTER-BASED SPATIO-TEMPORAL TRAFFIC GENERATION
This section presents an overview of our cluster-based method for spatio-temporal traf-
fic generation. The method makes two assumptions. The method is based on network
measurements; in particular, it applies statistical analysis to a packet trace collected
at a specific network link. Here, we assume that the user behavior observed from the
packet trace is representative and can reveal the network-wide traffic pattern. Our
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results could be improved if using network traces from several vantage points (e.g.,
for different link types) to provide a broader view of the overall network traffic. We
will explore the use of multiple traces for traffic generation in future work. We also as-
sume that traffic engineering can perfectly balance the traffic load among all links of a
given network topology. This would allow us to extend the measurements from a spe-
cific link to the entire network. The assumption is generally true; however, it does not
consider cases where traffic may be skewed temporarily on some links. One can imple-
ment methods to intentionally and probabilistically create traffic load imbalance. We
will explore this issue in the future.

Our method is divided into three steps:

(1) We analyze the traffic trace, by characterizing the traffic as a function of multi-
dimensional attributes and then grouping the end hosts with similar features into
clusters. In this way, we can identify the unique characteristics of different groups
of end hosts, such as traffic hotspots (either sources or sinks that generate large
data volumes) and heavily connected servers. This high-level traffic behavior is
then summarized as flow-level statistics between the clusters. The result will be
used subsequently for traffic generation.

(2) Given a network topology that consists of routers, we need to associate them with
the clusters derived from the previous step. Because we are only interested in the
interaction between the foreground and background traffic at the network links
connecting the routers, the traffic generator only needs to produce traffic on those
links, as opposed to modeling each individual end host. A router presumably can
connect to many end hosts, each belonging to a different cluster. That is, a router
may simultaneously belong to multiple clusters. The goal of this step is to “rea-
sonably” distribute (or map) the clusters to the routers of an arbitrary network
topology.

(3) Given the network topology, the cluster-level traffic summary, and the mapping
from clusters to routers, we can now generate traffic by randomly creating flows
between selected sources and destinations according to the statistical results.

In the following sections, we separately present the details for each of the three steps
of our proposed method.

4. STEP 1: TRAFFIC CLASSIFICATION
To generate realistic traffic, we first analyze existing traffic traces collected from In-
ternet measurement points, cluster the end hosts using multi-dimensional attributes,
and then summarize the high-level traffic behavior between the clusters.

4.1. Traffic Traces
To describe our method, we select three traffic traces obtained from the public Internet
data repositories as examples. The traces are collected at distinct Internet vantage
points. They include a CAIDA trace, collected from a US backbone link [CAIDA 2011];
a MAWI trace, collected from a trans-Pacific link [MAWI 2013]; and a campus network
trace, collected at the uplink from a university [Dainotti et al. 2008; Dainotti et al.
2009]. More specifically, the CAIDA trace was captured in July 2011 at the equinix-
chicago Internet data collection monitor in Chicago from a 10GigE backbone link of a
Tier-1 ISP connecting between Chicago and Seattle. The MAWI trace was collected in
May 2013 at sample point F from a 150 Mbps trans-Pacific link. The CAMPUS trace we
use was the web traffic generated by clients inside the University of Napoli “Federico
II” network in June 2004. The trace was collected at the campus’ 200 Mbps uplink
connecting the network to the rest of the Internet.
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The CAIDA Trace
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Fig. 1: Traffic intensity at different time scale for the three traces.

For the traffic analysis shown below, we used only the first 10 minutes of each trace.
Also, since we conduct flow-level analysis, we limit traffic to TCP only. This should be
fine as we have observed that TCP is the dominant traffic in all traces: it is over 81% for
the CAIDA trace, over 83% for the MAWI trace, and 100% for the CAMPUS trace (since
the trace consists of only web traffic). The 10-minute CAIDA trace contains over 5.8M
flows, 168M packets, and 804K distinct IP addresses. The MAWI trace contains ap-
proximately 510K flows, 13.5M packets, and 15K distinct IP addresses. The CAMPUS
trace contains about 100K flows, 14M packets, and 4K distinct IP addresses.

Fig. 1 shows the traffic intensity of the three traces, each in a separate row. At each
row, from left to right, we decrease the sampling interval while maintaining the num-
ber of samples at 600. The starting sampling interval is 1 second; each subsequent plot
is obtained by randomly choosing a subinterval, the length of which is one eighth of
the previous one. The x-axis of each plot represents the time offset from the starting
time of the randomly chosen subintervals. The figure shows intuitively the scale-free
traffic behavior at different time resolution.

4.2. Clustering End Hosts
For traffic clustering, we focus on four features (or attributes) for each end host, rep-
resented by a distinct IP address that appears in the traces: 1) the number of flows
(or TCP connections) involving the end host, 2) the number of distinct peers connected
with the end host, 3) the total number of bytes sent from the end host, and 4) the to-
tal number of bytes received by the end host. We obtain these attributes by analyzing
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Table III: The Clustering Result
The CAIDA Trace

Cluster 0 1 2 3 4 5 6 7 8
IPs 33840 232003 114516 39832 36923 77461 71595 89322 108739

(4%) (29%) (14%) (5%) (5%) (10%) (9%) (11%) (14%)
Flows 23 1 2 10 7 2 11 7 1
Peers 5 1 1 4 2 1 3 3 1
Sent 38082 368 3322 0 0 0 3220 1801 0
Rcvd 0 0 0 2262 157456 4692 9464 0 278

The MAWI Trace
Cluster 0 1 2 3 4 5 6 7 8
IPs 2108 678 475 3438 1914 1710 2480 517 1202

(15%) (5%) (3%) (24%) (13%) (12%) (17%) (4%) (8%)
Flows 3 2 60 1 81 11 3 2 1
Peers 1 1 16 1 1 2 1 1 1
Sent 991 62643 100811 611 26995 4469 0 978 337
Rcvd 0 1825 90654 625 41386 4677 1746 150859 4825

The CAMPUS Trace
Cluster 0 1 2 3 4 5 6 7
IPs 674 430 412 540 490 244 714 547

(17%) (11%) (10%) (13%) (12%) (6%) (18%) (14%)
Flows 1 32 12 59 4 235 4 2
Peers 1 1 4 8 2 25 1 1
Sent 462 230199 24147 75826 2995 331274 152940 21766
Rcvd 438 28825 27076 312731 3286 1052733 7963 763

the packet length, source and destination IP addresses, and the TCP flags from the
packet headers. We expect these attributes are enough to reveal the hidden spatial
distribution underpinning the user access patterns, as well as the temporal behavior
of individual traffic flows.

We conduct k-means clustering [MacQueen 1967], in particular, using a data mining
software, called WEKA [Hall et al. 2009]. K-means is a simple unsupervised learning
algorithm. It aims to partition the observations into k clusters: an observation is a
member of a cluster if it has the closest distance to the centroid of the cluster. In our
case, a trace often consists of many flows involving a large number of IP addresses.
We classify these IP addresses into a small number of clusters expecting that the com-
ponents within each cluster behave similarly. We note that the values of some of the
attributes may differ significantly in magnitudes. For example, the number of flows
involving a particular IP address ranges from one to several hundreds; the total num-
ber of bytes sent or received by an IP varies from a few bytes to several megabytes
or more. For these attributes, we take logarithmic values for clustering following a
common practice.

A main concern of the k-means algorithm is that the number of clusters, k, must be
provided a priori. Several methods exist for determining the proper number of clusters
needed for a given dataset. Increasing k would result in smaller errors, but would
also increase the computation. We use a popular method to choose k: we run the k-
means clustering algorithm with different values of k, and select the one such that the
clustering error is around the “elbow”—the error decreases insignificantly when the
number of clusters increases from that point.

Table III presents the detailed clustering results of the three traces, from which we
can make the following observations:

(1) The clusters vary greatly in size (in terms of the number of distinct IP addresses);
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(2) Some clusters operate as data generators, and some as data sinks; in both cases
significant asymmetry exists between the number of bytes sent and received by an
IP address;

(3) Traffic intensity, i.e., the average number of data sent and received per IP address,
varies significantly between the clusters, suggesting the existence of hot spots in
the network;

(4) Since different traces observe different traffic at different vantage points, the clus-
tering results are different.

4.3. Cluster-Level Traffic Summary
Once we have determined the clusters, we can collect the statistics of the traffic flows
between the clusters. In the following we summarize the results, which we later use
for traffic generation:

— Let k be the number of clusters. Let Ci be the set of distinct IP addresses (we treat
them as individual users) in cluster i, for all i ∈ {0, 1, . . . , k − 1}. We calculate the
population density for cluster i as:

φi =
|Ci|∑

0≤j<k|Cj |
(1)

— We use Fij to denote the total number of flows observed in the trace between an IP
address in Ci and an IP address in Cj , where 0 ≤ i, j < k. Note that for simplicity, we
do not distinguish the direction of the flows. We count each flow in both directions:
each flow observed in the trace between i and j is counted as 1/2 flows in Fij and
1/2 flows in Fji. Therefore, we have Fij = Fji. As a special case, Fii is the number of
flows between two IPs of the same cluster i. We use F to denote the total number of
flows observed in the trace, which can also be expressed using:

F =

k−1∑
i=0

k−1∑
j=0

Fij (2)

We calculate the flow density for cluster i as the proportion of flows that involve an
IP address in cluster i among all flows (including those within the same cluster):

ψi =

∑
0≤j<k Fij

F
(3)

We also calculate the peering probability from cluster i to cluster j, as the number of
flows between cluster i and cluster j, divided by the total number of flows involving
cluster i:

ωij =
Fij∑

0≤x<k Fix
(4)

— Let T be the duration of the trace. We calculate the aggregate flow arrival rate from
cluster i to cluster j, in number of flows per second, as follows:

λij =
Fij
T

(5)

Note that since we do not distinguish direction of the flows, λij = λji. As a special
case, λii is the aggregate flow rate between IPs of the same cluster i. Here we assume
that the flow arrival is a stationary Poisson process. To capture the non-stationary
behavior (such as the diurnal effect), we can easily extend this method by using a
piece-wise constant flow arrival rate for each time interval.
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Fig. 2: Q-Q plot of flow size vs. lognormal for the three traces.

— We describe the flow size (in number of bytes) from cluster i to cluster j using a log-
normal distribution with parameters µij and σij (we show evidence momentarily).
Here we use the flow size distribution to capture the asymmetric behavior of traffic
between clusters. For each identified flow in the trace, we separate the flow into two
flows, one for each direction. If the packet’s source address belongs to cluster i and
its destination address belongs to cluster j, we add the packet size to the flow size
from i to j, and vice versa. Note that the size of the directed flows is in general asym-
metric. Once we know the mean, m, and the variance, v, of the size of the directed
flows, it is easy to calculate the parameters of the lognormal distribution:

µ = ln

(
m2

√
v +m2

)
, σ =

√
ln
(
1 +

v

m2

)
(6)

— We calculate the aggregate traffic intensity from cluster i to cluster j, in number
of bytes per second, as the product of the aggregate flow arrival rate and the mean
flow size:

δij = λij · eµij+
σ2ij
2 (7)

The total in-flow traffic intensity and out-flow traffic intensity at cluster i, also in
number of bytes per second, can be summed up easily:

δ•i =

k−1∑
j=0

δji, δi• =

k−1∑
j=0

δij (8)

Note that both in-flow and out-flow traffic intensity also include traffic going be-
tween end hosts in the same cluster.

Lognormal distribution is appropriate for describing the flow size. Fig. 2 shows the
Q-Q plots of the flow size between two selected clusters from the CAIDA, MAWI, and
CAMPUS traces independently against a lognormal distribution with parameters es-
timated from the trace data. They match well. We observe similar results between all
clusters for the three traces, although they use different lognormal parameters.

5. STEP 2: MAPPING CLUSTERS TO ROUTERS
The generated traffic will be conducted between end hosts. Given a simulated network
topology that consists of connected routers, it is possible that we attach the end hosts
to the routers and then have the end hosts produce the traffic accordingly. However,
this would be unnecessary since we are only interested in generating the background
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traffic on the links between routers of the given topology. In this case, one can simply
have the routers assume the role of traffic sources and destinations and produce the
traffic amongst them accordingly. Since each router may direct traffic that belongs
to the attached end hosts of different clusters, we may need to map the clusters to
multiple routers of the given topology to preserve the spatial distribution of the traffic.

Doing so would require information on the spatial distribution of traffic among the
routers. For real networks, this information would be mostly proprietary and therefore
difficult to obtain. For synthetic network topologies used in simulation, it is impossi-
ble. One would have to make certain assumptions. For example, one could assume that
traffic flows are uniformly distributed over the network. This is unrealistic, however,
since it does not consider the network effect, such as link bandwidths, delays, conges-
tions, and routing. In this section, we present an algorithm that can reasonably map
the clusters to the routers, assuming that the traffic should be distributed over the
network as evenly as possible, as long as it will not load any particularly link dispro-
portionately, and the traffic load on any link will not exceed its link capacity.

Our solution is divided into two steps. In the first step, we derive the traffic matrix of
a given network. Here, we apply an existing traffic matrix estimation technique, which
can stochastically determine the traffic matrix for arbitrary network topologies. In the
second step, we assign the end hosts belonging to different clusters to the routers in
the given topology so that the resulting traffic is compatible with the traffic matrix
obtained from the first step.

5.1. Deriving Traffic Matrix for Arbitrary Network Topology
We first derive the traffic matrix for any arbitrary topology, which consists of n routers
and m links1. The goal is to calculate the traffic intensity rij from router i to router j,
for all 0 ≤ i, j < n and i 6= j. We adopt the method proposed by Nucci et al. [2005] to
estimate the traffic matrix. Their method first samples the flow rates from a statistical
distribution observed from measurement. The sampled rates are then assigned to the
source-destination pairs of the network by solving an optimization problem. In the
following, we describe only the formulation of the problem specific to our approach. We
refer the readers to the original paper for further details [Nucci et al. 2005].

Sampling Random Flow Rates. We assume that the flow rates follow the lognormal
distribution. It has been shown that lognormal distribution provides the best fit for
both Sprint and Abilene networks [Nucci et al. 2005]. For a given network topology
and routing information (we assume static routing), we first determine the lognormal
parameters µ and σ.

Suppose µc and σc are the mean and standard deviation of the link capacity of the
given network. From static routing information, we can find the path length, πij , in
number of links from router i to router j. We can then calculate the average number of
source-destination flows that traverse each link in the network:

γ =
∑

0≤i,j<n
i 6=j

πij
m

We assume that on average we should maintain the same link utilization as observed
in the packet trace. Let ρ be the link utilization of the observed packet trace, which
can be calculated as the total amount of data transferred over the link divided by the
duration of the trace and the link capacity. We can calculate the mean of the lognormal

1We only need to consider access routers which we assume are the ingress and egress points of all back-
ground traffic.
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distribution for the flow rate to be µcργ−1. That is, we scale the mean link capacity by a
factor of ργ−1. If we scale the standard deviation by the same factor, we can expect it to
be σcργ−1. Therefore, we can calculate the parameters for the lognormal distribution,
following Equation (6):

µ = ln(µ2
cρ/γ)−

1

2
ln(µ2

c + σ2
c ), σ =

√
ln(1 + σ2

c/µ
2
c)

Given µ and σ, we take a sample of size n(n− 1) from the lognormal distribution; we
denote the sampled flow rates as A0,A1, . . . ,An(n−1)−1.

Integer Linear Programming (ILP). Next, we simply follow the method proposed by
Nucci et al. [2005], which formulates the problem as an optimization problem that can
be solved using Integer Linear Programming (ILP). The result is that sampled rates
are assigned to the n(n−1) source-destination pairs so that it minimizes the maximum
link utilization. This is a reasonable goal since network traffic engineering is widely
used by ISPs to balance traffic load and minimize congestion.

The output of the solution is a set of mapping indicators Iijp , where 0 ≤ p < n(n− 1),
0 ≤ i, j < n and i 6= j. The indicator is 1 if flow rate Ap is assigned to the source-
destination pair from router i to router j, and 0 otherwise. Finally, we can obtain the
traffic matrix, where the traffic intensity from router i to router j can be obtained as
follows:

rij =

{∑n(n−1)−1
p=0 Iijp Ap if i 6= j

0 otherwise

5.2. Solving Cluster-to-Router Mapping
In step 1, we obtain the cluster-level traffic summary from the traffic trace. In the pre-
vious section, we obtain a traffic matrix, which represents the traffic demand between
the routers of any given network topology. In this section, we present an algorithm to
associate the clusters to the routers. More specifically, we need to solve for psi, which
is the proportion of the end hosts belonging to cluster s that are mapped to router i,
where 0 ≤ s < k and 0 ≤ i < n.

For a given network topology, we define the user density of router i as di, where 0 ≤
di ≤ 1 and

∑
0≤i<n di = 1. A router’s user density is a user-defined value; it is expected

to be proportional to the number of end users attached to the router. In cases where
end users’ geographical distribution must be considered in the performance evaluation,
this mechanism provides a way to distribute the traffic load accordingly. By default,
one can simply assume a uniform distribution, i.e., di = n−1.

We note that there may be discrepancies between the amount of traffic over the net-
work as specified by the traffic matrix and the amount of traffic shown in the cluster-
level traffic summary from the packet trace. This is normal. For example, the band-
width could be significantly different between the links in the target network and the
one from which we obtain the packet trace. To compensate for the difference, we define
a traffic proportion factor, θ, as follows:

θ =

∑n−1
i=0

∑n−1
j=0 rij∑k−1

s=0

∑k−1
t=0 δst

(9)

The numerator is the total traffic flow rate reported by the traffic matrix; the denomi-
nator is the total traffic reported by the cluster-level traffic summary.

We formulate the problem as a quadratic programming problem. The goal is to find
psi, the proportion of end hosts in cluster smapped to router i, so that we can maximize
the spread of the traffic behavior that is represented by the clusters, i.e., make the
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clusters distributed as evenly as possible, among all routers, subject to the constraints
dictated by the given traffic matrix. The optimization problem can be formally specified
as follows:

Minimize:

k−1∑
s=0

n−1∑
i=0

(psi −
1

n
)2

Subject to:

n−1∑
i=0

psi = 1, ∀s ∈ {0, 1, . . . , k − 1} (10)

psi ≥ 0, ∀s ∈ {0, 1, . . . , k − 1}, i ∈ {0, 1, . . . , n− 1} (11)

k−1∑
s=0

psi · φs = di, ∀i ∈ {0, 1, . . . , n− 1} (12)

θ

k−1∑
s=0

psiδs• −
n−1∑
j=0

rij = θ

k−1∑
s=0

psiδ•s −
n−1∑
j=0

rji, ∀i ∈ {0, 1, . . . , n− 1} (13)

θ

k−1∑
s=0

psiδs• ≥
n−1∑
j=0

rij , ∀i ∈ {0, 1, . . . , n− 1} (14)

Equation (10) states that the proportion of end hosts of the clusters mapped to all
routers should sum up to 1. Since they are proportions, Equation (11) states that they
should not be negative. Equation (12) defines the user density at router i, di, which
should be the sum of the proportion of end hosts of each cluster mapped to router i, psi,
multiplied by the cluster’s population density, φs.

Equation (13) matches the traffic intensity observed by the cluster-level traffic sum-
mary with that specified by the traffic matrix at each router. The first term on the
left-hand side of the equation is the sum of the out-flow traffic intensity of all clusters
assigned to router i, multiplied by the traffic proportion factor θ. The second term on
the left-hand side of the equation is the total traffic sent from router i, as seen by the
traffic matrix. The difference accounts for the traffic between the end hosts attached
to the same router i, and therefore cannot be observed by the traffic matrix. Simi-
larly, the right-hand side of the equation computes the difference between the sum of
in-flow traffic intensity of all clusters assigned to the router and the total traffic re-
ceived by the router as seen by traffic matrix, which is also the traffic between the
end hosts attached to the same router. Equation (14) makes sure that the difference is
non-negative.

The optimization problem is a convex quadratic programming problem with a posi-
tive definite objective matrix and therefore can be solved in polynomial time.

6. STEP 3: TRAFFIC GENERATION
From the first two steps, we have obtained the cluster-level traffic summary and a
mapping from the clusters to routers for any given network topology. Now we are ready
to generate the background traffic. Our method can be summarized as follows:
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(1) We model the flow arrivals as a Poisson process (using exponentially distributed
inter-arrival time), with an arrival rate:

λ =
αF

T
(15)

where F is the total number of flows observed in the packet trace (Equation 2) and
T is the duration of the trace. α is a scaling factor, a user-defined “control knob”
for varying the intensity level of the generated background traffic in order to test
applications under different network conditions. When α = 1, we expect the traffic
generator to generate network-wide traffic with similar traffic intensity as seen by
the trace. If α = 2 or α = 0.5, for example, we expect the intensity of the generated
traffic to be doubled or halved accordingly.

(2) For each flow arrival, we select the source cluster s with a probability equal to the
cluster’s flow density, ψs (Equation 3).

(3) Select the source router i with probability psi, which is the proportion of end hosts
in cluster s mapped to router i.

(4) Select the destination cluster t using the peering probability, ωst (Equation 4).
(5) Select the destination router j with probability ptj , which is the proportion of end

hosts in cluster t mapped to router j.
(6) Create a TCP flow from router i to router j and transfer data of a certain amount;

we sample the flow size (number of bytes) from the lognormal distribution with
parameters µst and σst.

(7) The algorithm continues from step (2) for each new flow arrival.

In general, a background traffic generator does not need to take into consideration
the source and destination IP addresses of the generated traffic flows. In some stud-
ies, however, one may need to preserve such information, for example, to allow simple
packet inspection by an intrusion detection system2. To generate traffic between spe-
cific end hosts, one needs to first associate the IP addresses to the routers of the given
topology. Suppose that N is the total number of distinct IP addresses we want to con-
sider for background traffic generation. Each router i will have (N · di) IP addresses,
where di is the user density of router i. We can assign these IP address to clusters
based on the cluster distribution at this router. In particular, one can assign the IP
addresses associated with router i to cluster c using the following proportion:

κci =
pci · φc∑k−1
s=0 psi · φs

(16)

where psi is the proportion of the end hosts belonging to cluster s that are mapped
to router i, and φs is the population density for cluster s. After we associate the IP
addresses to the routers, we can generate the flows with specific source and destination
IP addresses. More specifically, in step (3) of the above algorithm, we can select the
source address from all hosts attached to router i that belong to cluster s uniformly
at random. Similarly, in step (5), we can select the destination address from all hosts
attached to router j that belong to cluster t uniformly at random.

The major performance bottleneck of the traffic generation method is the same as
the performance issue encountered by the traditional packet-oriented simulation. In a
packet-oriented simulation, each packet-level instance such as packet arrival or packet
departure is processed as a simulation event. The computational cost increases propor-
tionally as the number of packets increases, which may result in an intolerable compu-

2As we mentioned earlier, content-based traffic generation is not the aim of this study. However, with this
additional consideration, one can easily generate traffic flows between IP addresses that are distributed over
the entire network.
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Fig. 3: The backbone of the Abilene network.

tational burden for large-scale network simulation. In contrast, fluid models model the
traffic in terms of continuous fluid flows rather than individual packet instances. This
model abstraction can significantly reduce the computational cost of the simulation by
a factor of one to three orders of magnitude compared with the packet-oriented models
(e.g., [Guo et al. 2000; Misra et al. 2000; 2003; Nicol 2001; Nicol and Yan 2004; Li et al.
2013]). We will investigate fluid-based background traffic generation in future work.

7. SIMULATION EXPERIMENTS
In this section we validate our background traffic model, particularly focusing on the
spatial and temporal properties of the generated traffic. We conduct the experiments
under two simulation scenarios, one on a real backbone network and the other on a
synthetic campus network.

7.1. The Abilene Network
We simulate the Abilene network to evaluate the basic properties of the generated
traffic, especially its spatial distribution. The network, as shown in Fig. 3, contains
twelve routers and fifteen links. The link connecting Indianapolis and Atlanta has a
bandwidth of 2.5 Gbps and all the other links have a bandwidth of 10 Gbps. We use
link ID 1 to 15 to identify the fifteen links individually. The ID number of the 2.5 Gbps
link is 11. An important reason we decide to use this network is that the network
has real traffic matrices available, which can help us determine whether our traffic
model can properly preserve the spatial distribution. In the experiment, we use the
same traffic matrix as the one described by Zhang et al. [2005a]. For packet trace, we
use the CAIDA trace collected from a US backbone link, as described in Section 4. In
this experiment, since we only focus on the constitution and distribution of the back-
ground traffic, and since there is no foreground traffic to interfere with the generated
background traffic, we simplify the traffic generator by replacing the computationally
expensive packet-oriented simulation with a fluid model using constant-rate flows for
expediency (at step 6 of the traffic generation algorithm).

First, we examine whether the generated background traffic would constitute the
same type of flows as in the original packet trace. This can be achieved by applying
the same clustering algorithm with the same set of attributes on the generated traffic
trace, and comparing clustering results with those from the original traffic trace. In
particular, we use a metric, called “rand index”, to determine the clustering similarity.
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Fig. 4: Rand index of all links of the Abilene network.

The rand index measures the agreement between two clustering results by counting
the membership of each point of the clustering. It has a value between 0 and 1, with 0
indicating that the two clusters do not agree on any pair of points and 1 indicating that
the clusters are exactly the same. For each generated traffic trace (one for each link),
let N be the total number of observations (i.e., distinct IP addresses) appearing in the
trace (there are N(N − 1)/2 observation pairs). If the pair of IP addresses are from the
same cluster, we say they are co-members. Let N11 be the number of observation pairs
that are co-members in the original trace and still remain co-members in the generated
traffic trace. Let N00 be the number of observation pairs which are not co-members in
the original trace and still belong to different clusters in the generated traffic trace.
We can define the rand index as follows:

SR =
2(N11 +N00)

N(N − 1)

Fig. 4 shows the rand index for every link of the network. We see that the value
never goes below 0.75, which indicates that the majority of the IP addresses maintain
a similar membership association as in the original classification. That is, the consti-
tution of the traffic matches well with the cluster assignment over the entire network
when the traffic is spread among all links of the given network topology.

Next, we validate our traffic model by comparing the spatial distribution of the gen-
erated traffic against the real traffic matrix. In particular, we compare the link utiliza-
tion and the traffic distribution (i.e., the percentage of traffic on the links) resulting
from our spatio-temporal method (Spatio-Temporal), against those from the original
traffic matrix (Real). To make it more interesting, we also compare the results with
those from using a method that places the flows over the network uniformly at ran-
dom (Random). Fig. 5 shows the link utilization on all fifteen links, and Fig. 6 shows
the percentage of traffic on each of the fifteen links. We can probably attribute the
slight increase in the link utilization of our method to the TCP acknowledgments; in
our method, we ignored the ACK flows. One could include the effect of the ACK flows
by simply readjusting the traffic proportion factor in Equation 9. Overall, the results
demonstrate that our spatio-temporal method is able to capture the spatial distribu-
tion of the overall traffic as dictated by the traffic matrix.
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Fig. 5: Utilization of all links of the Abilene network.
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Fig. 6: Traffic distribution among all links of the Abilene network.

7.2. The Campus Network
In the following experiment, we use a synthetic campus network topology, as shown
in Fig. 7, which consists of 18 routers, among which 10 routers are access routers
(marked with circles), which are connected with end hosts that generate the traffic.
We designate different bandwidths to links so that we can observe the non-uniform
traffic distribution over the network. For packet trace, we use the CAMPUS trace col-
lected at a university campus unlink, as described in Section 4. Since we study the
temporal characteristics of the generated background traffic, we use a detailed TCP
implementation in simulation.

We examine the variation of intensity of the generated traffic over time on all links
of the campus network. In the experiment, we set the scaling factor α to be 0.5, 1,
1.5, 2, 2.5, and 3, respectively, for different background traffic intensity levels. Fig. 8
shows the traffic intensity on a 50-Mbps link (we observed similar results for the other
links as well). Each row shows the results using a different scaling factor. Similar to
plots in Fig. 1, at each row, from left to right, we decrease the sampling interval while
maintaining the number of samples at 600. The starting sampling interval is 1 second,
and each subsequent plot is obtained by randomly choosing a subinterval, the length of
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Fig. 7: A synthetic campus network.

which is one eighth of the one on the left. We see apparently that the traffic burstiness
persists over different time scales regardless of the scaling factor.

To gain a more precise view of the traffic burstiness, we use the wavelet-scaling plot,
also known as the energy plot, which can capture the correlation in the amount of
traffic arriving at consecutive time intervals of a given size [Feldmann et al. 1999].
Fig. 9 shows the energy plot of the generated traffic on the same 50-Mbps link at
different time scales and with different scaling factors. For comparison, we also plot
the energy of the original CAMPUS trace. The x-axis shows a range of time scales,
each being 2−j , from j = 0 (one second) to j = 11 (around 0.5 ms). The y-axis shows the
corresponding energy value in a logarithmic scale. A higher energy level represents
more traffic burstiness. We see that the scaling factor has almost no impact on the
traffic burstiness at different time scales. Furthermore, the generated traffic exhibits
very similar burstiness when compared to the original packet trace, except when j is
around 9 (at about 2 ms), which is actually at a time scale not so much larger than the
packet transmission time. A slight deviation in the traffic burstiness at this small time
scale would have little impact on the foreground traffic. For that reason, we chose to
use fixed packet size in our traffic generator when generating the TCP flows.

While the scaling factor has little effect on the traffic burstiness, it is supposed to
have significant impact on the traffic intensity, as is apparent in Fig. 8. In Fig. 10,
we show the link utilization with different scaling factors for all links that have back-
ground traffic3. We see that the traffic intensity increases almost proportionally on
all links. Fig. 11 shows the traffic distribution (the percentage of traffic on the links).
As expected, different scaling factors have little effect on the traffic distribution. Ta-
ble IV summarizes the results by showing the mean and standard deviation of the link
utilization and the traffic distribution.

In the last experiment, we study the effect of the generated background traffic on
the behavior of foreground traffic. In a previous study, Vishwanath and Vahdat [2008]

3The campus network contains 23 links, two of which do not have background traffic, because they are not
traversed by flows generated between the access routers based on shortest-paths.
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Fig. 8: Traffic intensity on one link of the campus network.
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Fig. 9: Energy plot of the CAMPUS trace and generated traffic on one link.

Table IV: Link Utilization and Traffic Distribution Summary

α link utilization traffic distribution
mean stdev mean stdev

0.5 0.0565 0.0498 0.2043 0.1164
1 0.1129 0.1019 0.2062 0.1190
1.5 0.1760 0.1589 0.2106 0.1228
2 0.2350 0.2127 0.2099 0.1217
2.5 0.2895 0.2608 0.2093 0.1201
3 0.3501 0.3178 0.2099 0.1207

showed that background traffic can have significant impact on applications, including
Web downloads, multimedia video streaming, and bandwidth estimation tools. Here,
we simply perform a simulation experiment to show that our generated background
traffic can significantly influence the foreground applications. We select two routers
in the campus network (one in the 50-Mbps network and another in the 20-Mbps net-
work) and have them transfer a 100 MB file using TCP. We repeat the experiment 25
times for each scaling factor. Fig. 12 shows the cumulative distribution function of the
measured throughput. As expected, we see that the throughput decreases when the
background traffic intensity increases with larger scaling factor.

8. CONCLUSION AND FUTURE WORK
In this article, we propose a method for generating the background traffic workload
that can capture the same spatial and temporal characteristics as observed from the
Internet traffic measurement. Our method first classifies traffic according to multi-
dimensional features, and then maps the traffic classes onto a given network topology
for traffic generation. We validate our simulation method both on a realistic backbone
network model and on a synthetic campus network model. The results show that the
model is able to generate representative background traffic with important spatial and
temporal characteristics.

For future work, we would like to explore in several directions. First, our traffic gen-
eration method is based on network measurements, assuming that the user behavior
observed from the packet trace is representative and can reveal the network-wide traf-
fic pattern. It is not enough, however, that one simply relies on a single packet trace;
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Fig. 10: Link utilization on the campus network with different scaling factors.
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Fig. 11: Traffic distribution on the campus network with different scaling factors.

instead, we need to make use of network measurements at different vantage points
(e.g., from multiple links of different types at different locations in the network) in
order to provide a broader view of the overall network traffic. One may need to judi-
ciously select the traces for a representative global network traffic scenario. We need
to identify and deal with the correlations among the different traces. It is also impor-
tant to represent the idiosyncratic nature of different links at different locations for
more realistic network-wide background traffic generation. Our current method relies
on the stable behavior of the traffic trace. In order to capture the variance at large time
scales (such as the diurnal effect), one may need to extend our method to use traces
collected at different time periods to dictate traffic generation for the corresponding
time intervals.

Second, our spatio-temporal method can be extended for content-based traffic gen-
eration. There are two possibilities. One is to simply extend the traffic generation
mechanism (the last step) to produce traffic flows with specific content. In this case,
the workload can still preserve the spatio-temporal structure; however, the content
may not. The other method is to consider adding features of content when performing
traffic classification. In this case, both workload and content can be spatio-temporally
correlated. Content-based traffic generation needs to consider the specific type of ap-
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Fig. 12: CDF of TCP throughput with different scaling factors.

plications. We would like to explore content-based background traffic generation for
important applications, such as network caching, content distribution, and intrusion
detection.

Third, we would like to extend the method and introduce more “control knobs” in the
model so that the users can easily tune the parameters to generate different traffic sce-
narios, while maintaining the important spatial and temporal traffic characteristics.
There are several possible places one can insert such control knobs. For example, we
have introduced a scaling factor for varying the generated background traffic intensity.
However, the traffic load is perfectly balanced among all the links in the network. To
tip the balance, one can introduce a traffic skew factor in the specification of the opti-
mization problem for mapping the clusters to routers. One can also introduce a similar
mechanism when estimating the traffic matrix.

Last, background traffic generation can be computationally expensive for packet-
oriented simulation. We need to consider high-performance methods especially for
large-scale networks with high-capacity links. We can use fluid models to represent
background traffic. We applied a simple fluid model for validation in Section 7.1 in
this work, since the experiment does not include interaction with foreground traffic.
We will investigate hybrid models using our traffic generation method and integrating
fluid-based background traffic and packet-based foreground traffic in future work. It
will be a performance-accuracy tradeoff—one needs to accurately and yet efficiently
capture the mutual interaction between the foreground applications and background
traffic at the proper timescale.
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