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ABSTRACT

Real-time network simulation enables simulation to oper-
ate in real time, and in doing so allows experiments with
simulated, emulated, and real network components acting
in concert to test novel network applications or protocols.
Real-time simulation can also run in parallel for large-scale
network scenarios, in which case network traffic is repre-
sented as simulation events passed as messages to remote
simulation instances running on different machines. We note
that substantial overhead exists in parallel real-time simula-
tion to support synchronization and communication among
distributed instances, which can significantly limit the perfor-
mance and scalability of the hybrid approach. To overcome
these challenges, we propose several techniques for improving
the performance of parallel real-time simulation, by elimi-
nating parallel synchronization and reducing communication
overhead. Our experiments show that the proposed tech-
niques can indeed improve the overall performance. In a use
case, we demonstrate that our hybrid technique can be readily
integrated for studies of software-defined networks.
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1 INTRODUCTION

Network Innovations can be disruptive. A case in point is the
design of Future Internet Architectures (FIA). Recent pro-
posals on Software Defined Networking (SDN) have gained
tremendous momentum in the networking community, both in
data-center networks and enterprise networks, due to SDN’s
advantages in flexibility, programmability and functional-
ity over the traditional network design. With the growing
adoption of SDN-enabled hardware and protocols, one needs
network testbeds that can evaluate SDN-based solutions and
help understand at-scale application behaviors under diverse
network conditions before real deployment.

Various testbeds have been proposed to evaluate network
solutions with different capabilities. Emulation testbeds en-
sure a faithful representation of the operations of the relevant
systems and protocols. For example, Mininet [11] is an em-
ulation tool that has been widely used for prototyping and
validating research ideas for SDN and cloud services. A major
concern related to emulation, however, is its limitations in
performance, especially under stress situations where network
traffic exceeds the processing capability of the emulation soft-
ware. It is well-known that the aggregate throughput handled
by Mininet during an experiment must not exceed several
gigabits per second, or significant errors may occur that one
would not be able to trust the performance results from
the experiments. Emulation also has a scalability issue: it is
rather difficult to emulate large-scale networks (with tens of
thousands of networked entities or more) in practice.

Simulation provides a good alternative. It is especially
useful for comparing design alternatives and for understand-
ing the performance issues and scalability limitations under
different scenarios. Simulation is also regarded as a good way
to prototype network protocols, so that their major functions
can be quickly examined in order to identify potential issues
with the design. A major problem with simulation, however,
is that it lacks realism, especially when one wants to study
new network designs and new network protocols under real
network operating environments. Furthermore, in the most
common cases, the implementation effort for simulation is
not much less than implementing the real software because
of the complexity involved in the today’s network simulation
tools. Consequently, simulation can seem to be be less at-
tractive to researchers who demand more effective and fast
implementation of their research ideas. As a result, most of
the design evaluations and performance studies today are
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concerned only with the algorithmic and protocol-level de-
tails, but ignore the network-wide issues. By treating the
large network as a black box, these studies may not reflect
the reality. For example, how well will the new network de-
sign scale and accommodate various types of traffic when
deployed? How would an SDN-enabled transport protocol
or a content distribution service potentially alter network
traffic characteristics at large and therefore affect existing
applications?

Real-time simulations has been used to improve the utility
of simulation for network research (e.g., [1, 5, 17, 19, 21, 24]).
By combining the simulated network with emulated compo-
nents, such as running real implementation of applications
and protocols in virtual machines and having simulation to
interoperate with software network switches and routers, real-
time simulation provides as a hybrid testing environment for
studying network protocols and applications in large-scale
settings and under various synthetic network conditions.

Parallel real-time simulation extends parallel simulation
tools with real-time capabilities [19]. In doing so, one can
improve the scalability of an emulated network when the sim-
ulated network entities and simulated network traffic are com-
bined with the emulated network protocols and applications
implemented for the real system. While parallel real-time
simulation potentially can support large-scale experiments,
the communication overhead for synchronizing the parallel
simulation processes can be substantial especially for large
parallel runs. In addition, since the network traffic traveling
across separate simulation instances is represented as remote
time-stamped messages between the parallel processes, if the
traffic demand increases, the cross-machine traffic for the
simulation will also increase. For traffic intensive applications,
the traffic volume can overwhelm the system causing signifi-
cant slowdowns in simulation. When the real-time execution
can no longer be guaranteed, we cannot trust the real-time
simulation results as they no longer reflect the real operation
of the system.

In this paper, we propose several methods to improve
parallel real-time network simulation. First, we propose a
drastically different design of parallel simulation. Given that
most of today’s parallel architectures are tightly synchronized
in wall-clock time, we removed the conservative synchroniza-
tion protocol that help guarantee causality constraint for
parallel simulation. Instead, the simulation instances advance
their simulation time in coordination with the local wall-
clock time. In doing so, the real-time simulation system may
introduce subtle timing errors caused by out-of-order event
execution. We posit that these errors are relatively minor
when compared to the potential errors otherwise caused by
the slowdown of the simulation processes due to fine-grained
synchronization.

Second, we introduce methods and the corresponding soft-
ware constructs to further reduce the communication over-
head when simulation is conducting traffic on behalf of the
emulated applications. This is achieved, for example, by

batching and compressing the real network packets as they
are transported across the machine boundaries.

The rest of this paper is organized as follows. Section 2
provides the background of our research. We discuss related
work in parallel real-time simulation and in SDN emulation.
Section 3 presents the overall design of our new parallel real-
time simulation framework. Section 4 focuses specifically on
the design of the software constructs in real-time simulation
to interact with the emulated networks and applications. We
conducted preliminary experiments to evaluate our proposed
approach. The results are presented in Section 5. Finally, we
conclude the paper and outline future work in Section 6.

2 BACKGROUND

In this section we discuss the state of the art on parallel real-
time simulation and also related work supporting large-scale
SDN experiments.

2.1 Parallel Real-Time Simulation

Parallel discrete-event simulation (PDES), or parallel simula-
tion, is well studied field. A PDES system consists of separate
simulator instances that require synchronization in order to
guarantee the natural advance of simulation time at various
components of the system. This is achieved by exchanging
time-stamped message among the parallel instances. There
are two broad categories of synchronization algorithms, op-
timistic and conservative. A comprehensive review of these
approaches can be found in [6]. Parallel simulation has been
used to model large-scale systems, such as transportation
systems, computer networks, parallel systems and parallel
applications. Since these systems typically involve tightly
coupled components, efficient time management is one of the
most important factor in determining the performance and
scalability of a parallel simulator.

When the simulation time advancement is synchronized
with the wall-clock time, the state of the target system is
changed in real time. That is, the simulation is running in
real time. If a simulated network is running in real time, it
is able to interact with the physical processes that happen
in real time. That will include interacting with the users
in real time, and interacting with the real applications and
network protocols operating in real time [12]. By interaction,
we mean that a real entity (a user, an application, or a
network protocol) can interoperate with an simulated one.
For example, a simulated TCP protocol implemented with a
congestion control algorithm can exchange data packets with
a real TCP protocol implemented in the operating system
on a real machine. In doing so, the simulated network can
be treated as an emulated component and therefore be able
to test applications or protocols, and play with simulated
network scenarios.

Many existing network simulators have been augmented to
support real-time simulation, such as ns-2 [5] and ns-3 [20].
To improve simulation performance, one can adopt parallel
discrete-event simulation. Previously, we developed PRIME,
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which is a discrete-event simulator designed to run on paral-
lel and distributed platforms and handle large-scale network
models [19]. PRIME has an emulation infrastructure based on
VPN that allows distributed client machines to remotely con-
nect to the real-time simulator running at a high-performance
computing cluster [15]. PRIME also provides implementa-
tions of a set of TCP congestion control algorithms, ported
from the Linux TCP implementation, so that network appli-
cations can readily interoperate with the parallel real-time
simulator for extensive simulation and emulation studies [4].
PRIME also incorporated other advanced network traffic
modeling techniques. For example, PRIME supports inte-
gration of fluid-based network traffic with packet-oriented
network traffic so that the simulator can handle large traffic
volume with reduced computation [14].

To run parallel simulation in real time, separate simula-
tion instances are run concurrently on distributed-memory
machines. Each simulation instance is operated in real time.
That is, its simulation events are processed according to
the wall-clock time. The simulation instances communicate
with one another using time-stamped messages; their time
advancement is synchronized according to the (conservative)
parallel simulation synchronization protocol. In [13], we pro-
posed a solution for scheduling the logical processes according
to the deadline and the real-time constraints. We also pro-
posed an event delivery mechanism for the parallel simulator
to incorporate emulated events originated from the physical
system.

Parallel real-time simulation allows hybrid experiments of
large networks. A network experiment in this case consists
of a simulated network with a detailed specification of the
network topology, with end hosts, routers and links, with
detailed parameters, including bandwidth and latency. The
experiment also specifies network protocols and applications
running on the hosts and routers. Some part of the network
can be designated as real, in which case, real implementa-
tions of network applications and network protocols, and real
network traffic can interact with the simulated network. This
would allow us to study them directly in their real machine
environments. Using parallel real-time simulation, we can
test these applications and protocols by embedding them in
a large-scale virtual network environment, so that we can
create diverse network conditions in simulation for validation
and performance evaluation.

As an example, Figure 1 shows a parallel real-time simula-
tion setup of a hybrid experiment involving a large simulated
network. The large simulated network is partitioned among N
simulation instances and each assigned to a separate machine
(we call a worker). There can be one or several emulated net-
works connected to each simulation instance. In this example,
we have an emulated SDN network (which we call SDN Sim-
pleNet) for each simulation instance. The SDN SimpleNet is
an emulated network, composed of Linux namespaces, soft-
ware routers [18], and one or more controllers for managing
the OpenFlow network [16]. They can interact with the sim-
ulated network through TCP/IP. Packets generated by the

Figure 1: Parallel real-time simulation of a dis-
tributed SDN solution on a large hybrid network.

emulated network, if they need to be sent over the simulated
network, will be converted to simulated events. If the destina-
tion of the packets is located in another simulation instance,
the machine running the local simulation instance will send
these events to the remote instances through its event deliv-
ery mechanism. The events will be processed at the remote
instance according to their timestamps. If the packets are
destined to an emulated network (another SDN SimpleNet),
the simulator will export the events from the simulation and
give the packets to the target emulated network (say, using
raw sockets).

2.2 SDN Emulation

Over last decade there has been tremendous push towards
SDN. OpenFlow[16] has emerged as a framework to standard-
ize the communication between the control plane and the data
plane of an SDN network. Software-Defined eXchange (SDX)
(such as [7]) is also emerging as an standard for information
exchange across domains. Aside from these standardization
efforts, Open vSwitch [18] and Linux namespace has enabled
OpenFlow-based SDN prototyping. One of the most widely
used SDN prototyping emulator is Mininet ([8, 11]) which can
create a complete virtual network on a single machine. The
virtual network consists of lightweight hosts implemented as
separate Linux namespaces, which are connected by software
switches controlled by SDN controllers.

As a widely used platform, Mininet helps prototype and
perform basic tests of SDN applications. The bulk of Mininet
implementation is related to providing a python-library that
glue together several lightweight Linux-specific virtualization
components, virtual switches and flow control mechanism
in a network experiment. One can create a few thousand of
hosts using Mininet easily; however, trying to invoke a large
number of traffic flows would cause the emulator to perform
very poorly and result in significantly low throughput [10].
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Figure 2: Traffic demand over time.

An interesting aspect of Mininet is that it can be used to
support reproducible networking experiment research. This
is achieved by Mininet allowing research projects to recreate
the same network experiments in one machine with very little
effort [8, 9]. Some of these reproducible projects tackle SDN
research, like Hedera [2], which is an Openflow-enabled load
balancing solution. However, the downside of Mininet is that
some research requires an extensive performance evaluation
part that could be difficult to reproduce. Thus, some of the
techniques used to reproduce Hedera1 include downscaling
the link bandwidth in the setup from 1 Gbps to 10 Mbps
and also restrict the CPU utilization of each host to a tiny
fraction of the total CPU to prevent traffic generation and I/O
contention. Because of some of these design decisions, whether
we can truly reproduce research results is questionable.

In spite of wide spread acceptance, Mininet has some
severe performance and scalability issues. More specifically,
its performance may fall short when it comes to creating
large networks consisting of hundreds of hosts and running
series applications. To solve this problem, Yan et al. proposed
virtual-time-enabled VT-Mininet, a technique intended to
improve performance fidelity [23]. They implemented virtual
clock in the Linux kernel so that Mininet can experience time
dilation to improve its packet processing capability. However,
Wette et al. [22] showed that the relationship between the
required dilation factor and the size of the topology is not
linear for larger networks, which means using time dilation
is not sufficient to supporting large experiments.

To solve the network size limitation of Mininet, Max-
inet [22] was proposed to partition the network into smaller
pieces and distribute them among separate Mininet instances
running currently on a cluster. A disadvantage of using Max-
inet is the cross-machine traffic, which is still limited by the
bandwidth of the physical network connecting the partitions.

To illustrate such limitations, we created a distributed
Maxinet experiment. We set up a network with a tree topol-
ogy, which consists of 128 hosts partitioned into two equal
parts and mapped onto two physical machines. We varied the
number of flows from 1 to 64, doubling number of flows every
30 seconds, with at most one flow at each host. We direct the

1https://reproducingnetworkresearch.wordpress.com/2012/06/06/hedera/

 0

 50

 100

 150

 200

 250

1 flow:1

2 flows:31

4 flows:61

8 flows:91

16 flows:121

32 flows:151

64 flows:181

A
g

g
re

g
a
te

 T
h
ro

u
g

h
p

u
t(

M
b

p
s)

Total Flows:Time(Seconds)

link delay = 0.01 ms
link delay = 0.0 ms

link delay = 0.1 ms
link delay = 1.0 ms

link delay = 10 ms
link delay = 20 ms

Figure 3: Aggregate throughput by Maxinet.

flows from one partition to the other. The experiment was run
on two 16-core machines connected with a 10 Gbps network
on CloudLab [3]. Figure 2 shows the traffic demand of this
experiment (i.e., the theoretical limit). Results of the experi-
ment are shown in Figure 3. We can see that the aggregate
throughput never exceeds 220 Mbps, which is significantly
lower than the demand. In the experiment, we also tried to
vary the link delay in order to control the TCP throughput.
However, the severe limitation in the data throughput across
the machines makes these choices almost irrelevant.

3 OVERALL DESIGN

The overall architecture of our parallel real-time simulation
testbed is comprised of one or multiple real-time simulation
instances each interacting with an arbitrary number of emu-
lated networks. Each of the real-time simulation instance is a
stand-alone simulation execution with support for real-time
interaction with the emulated networks. We use the real-time
simulator based on PRIME [19]. PRIME provides packet
capture and forwarding capability implemented at the simu-
lated network interfaces. The packet capture and forwarding
mechanism is called a portal in the simulator. The simulator
can instantiate a large number of portals at the same time,
allowing it to interact with separate emulated networks. For
SDN experiments, these emulation networks are called SDN
SimpleNets. They are lightweight implementation of Mininet-
like networks, which consist of virtual hosts, implemented as
Linux namespaces, and software routers, implemented using
Open vSwitch.

The real-time simulation instances coordinate with one
another through messages delivered in real time. Each simu-
lation instance advances its simulation clock according to the
local wall-clock time. We assume that the machines running
the real-time simulators are themselves time synchronized,
for example, using the Network Time Protocol (NTP). In
a cluster or cloud computing environment, this is generally
true.

Communication between the real-time simulation instances
can take place either when a simulation event needs to be sent
to a remote simulation instance (for example, between a pair
of simulated TCP end-points located on separate real-time
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simulation instances), or when an emulated network needs
to communication with another emulated network attached
to a different real-time simulation instance. We treat com-
munication crossing the boundaries of real-time simulation
instances as network packets and serialize necessary data into
a raw buffer and send them either through a TCP connection
established between the real-time simulation instances or as
individual UDP packets. The receiver side can then perform
required translation upon the arrival of the packets based on
the information contained in them. We call this mechanism
packet marshalling.

In a traditional parallel real-time simulation, the real-
time simulation instances are tightly synchronized using a
parallel simulation synchronization protocol. Depending on
the lookahead obtained when partitioning the target network
model (which usually ranges from a few microseconds to
possibly several milliseconds), the cost of synchronization can
be quite significant, especially when the number of parallel
instances increases. The synchronization cost may eventually
drag down the real-time simulation performance, making it
impossible to keep up with the real time.

Our proposed method is to totally relieve the real-time
simulation instances from the burden of having to perform
time synchronization (conservative or optimistic) at all. The
simulation instances can advance their simulation time inde-
pendently, although they can only advance their simulation
clocks according to their local wall-clock time. Failures may
occur when delivering the packets or missing real-time dead-
lines due to delays in event processing or network latencies.
However, these failures would remain local to the specific
instances, and they would not impact the progression of the
entire simulation, which may consist of hundreds or thousands
of these real-time instances in a large network experiment
scenario. Another benefit of this approach is that, since the
instances are stand-alone simulations, they can be created
and destroyed as needed, and therefore one can presumably
create a more dynamic simulation environment.

Figure 4 shows an example of parallel real-time simulation
for hybrid SDN experimentation at-scale. A complete experi-
ment is comprised of multiple real-time simulation instances,
each of which runs on a separate machine. These instances are
formed of an arbitrary number of SDN SimpleNets connect-
ing to a real-time simulation instance, with packet capture
and forwarding capabilities.

4 REAL-TIME PORTALS

The proposed parallel real-time simulation infrastructure
features two different types of real-time portals. Real-time
portals are mechanisms used by the real-time simulation in-
stances to communicate with emulated networks and with
other real-time simulation instances. The first type is called
the emulation portals, which connect the real-time simulator
with the SDN SimpleNets. The second type is called the peer-
ing portals, which connect with remote simulation instances.
The emulation portals can also be used to connect simulation

Figure 4: Independent parallel real-time simulation.

instances. However, as we will show from experiements, the
peering portals are better optimized for such cases.

4.1 Emulation Portals

Emulation portals use existing technology. We describe them
here for completeness. When a real-time portal is config-
ured to communicate with an emulated network, it needs
to capture the packets generated by the emulated network
and import them to the simulator. For emulation portals, we
can capture the raw Ethernet frames using options provided
in the libpcap2 library. We filter the captured packets for
compatibility with the protocols supported by the network
simulator. Then we create a simulation event that encapsu-
lates all necessary information of the incoming packet. The
event is then scheduled and the corresponding packet is as-
sociated with the portal’s attached network interface. The
simulation event will be processed by the simulator kernel as
soon as it gets to process it. When this event is processed,
the packet will be added to the tail of the network queue
corresponding to the network interface.

If the packet is destined to an IP address that is mapped
to another emulated network, the event needs to be sent out
through the emulation portal. In this case, the simulator will
serialize the internal event data structure into an IPv4 packet
and forwards it using raw IP socket. Packets that are sent
out using the emulation portals are full IP packets.

Since the portal is serving as a packet capturing mechanism,
any alternative packet capturing mechanism would do the
job. However, their performance may vary due to different
handling of context switches required to implement packet
arrival. When a network simulation is configured to interact
with SDN emulations, all of the portals are implemented as
emulation portals so that identical processing can be take
place in all places.

2http://www.tcpdump.org/
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Figure 5: Receiver batching at peering portal.

4.2 Peering Portals

For communication between parallel real-time simulation in-
stances, the simulator forwards minimal information required
to reconstruct the packet event on the receiving end. In case
of pure simulation (i.e., no emulated networks), this minimal
information would be mainly protocol headers; in particular,
no message payload is necessary. As such, these messages are
usually smaller than 200 bytes. For emulated packets, the
payload must be included since the emulated networks run
real applications. In both cases, this information contained in
the packet event needs to be contained in a real UDP packet
and sent to the remote simulation instance.

To improve efficiency, one can perform batching of the
packet events destined to the same remote real-time simu-
lation instance. This is done at the sender side. By piggy-
backing these packet events together into one UDP packet,
we can essentially amortize the cost associated with forward-
ing individual packets and the cost of interruption at the
receiver end for processing the packet arrival. Batching can
be performed either at regular time intervals, or by the packet
size. Whenever there is no room left to fill in more packets in
the current UDP packet, a new UDP packet should be used.

Batching can also be applied at the receiver end. Since the
traffic inserted into simulator are incoming from real network
interfaces, there may not exhibit any pattern. But holding
the packets at the receiving portal will amortize cost of per-
packet processing, given that the portal has large enough
buffer and if the application can tolerate a certain level of
delays. Figure 5 illustrates the receiver side batching method.
The sender side logic is similar.

This effectiveness of this technique, however, requires care-
ful calibration. On the one side, the smaller the message size
compared to the maximum Ethernet frame size, the higher
the benefit of using this technique. For a large number of
packets, the penalties of crossing the machine boundaries can
be quite high because of the overhead associated with the
context switch between the user-space and the kernel. On the
other hand, batching may create problems for delay sensitive
applications. Even for TCP, a prolonged and unsteady batch-
ing delay may affect the calculation of the round-trip time

Figure 6: Dumbbell experiment setup.

and therefore affect its throughput becase TCP’s congestion
control algorithm may be quite sensitive to the delays. It
is possible that different batching polices can be applied to
different applications or different protocols, depending on
their delay sensitivity. Batching technique can also be applied
to achieve different objectives, such as increasing throughput,
or reducing CPU utilization, etc. A careful investigation is
warranted and we postpone it to future work.

5 EXPERIMENTS

We have carried out preliminary experiments to evaluate the
capabilities and assess limitations of proposed parallel real-
time simulation architecture. In our experiments, we were
able to test networks consisting of thousands of simulated
and emulated hosts and a large number of real application
and simulated background traffic.

5.1 Traditional Parallel Simulation

To understand the strengths and shortcomings of the pro-
posed parallel real-time simulation approach, we first look
at the traditional approach, which is based on conservative
synchronization (implemented using the Message Passing
Interface). We created a simple dumbbell topology with a
10 Gbps bottleneck link, as shown in Figure 6. All the links
connecting hosts (h1 to h128) with the routers are configured
as 1 Gbps links with 1 ms propagation delay. The network
is divided into two halves and each partition is mapped to
a different physical machine. That is, the bottleneck link
connecting the two routers at either side of the dumbbell is a
cross-machine connection between two real-time simulation
instances. We start the model with one simulated flow and
then double the number of flows every 30 seconds during
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Figure 7: Parallel simulation results.

simulation until there are sixty four flows in total in the sys-
tem. The source and destination of these flows lie in different
partitions.

The aggregate traffic demand resembles a staircase func-
tion as depicted in Figure 2, clearly showing the demand
is doubling at each successive interval. Note that the maxi-
mum aggregate bandwidth achievable in this configuration is
10 Gbps because of the bottleneck link. We conducted the
experiment on two commodity workstations with eight-core
Intel Xeon E5645 at 2.4 GHz clock frequency. The machines
were connected by an on-board 1 Gbps network interface and
a commodity 8-port switch.

Figure 7 shows the aggregate throughput of all the concur-
rent flows. We ran this experiment with a pure simulation
setup. That is, we disabled the real-time regulation in the
simulator and let the simulator run as fast as possible. The
total simulation time is set to be 210 seconds, and the simu-
lator took 1,500 wall-clock seconds to complete (a slowdown
of more than 7x). Since the design bottleneck was 10 Gbps,
in the presence of 16 or more flows (at 120 seconds into
simulation and beyond), the throughput of the application is
throttled back.

We mapped the simulation time into real time and show
the aggregate throughput thus achieved by parallel simula-
tion (i.e., the curve marked “Real Time” in Figure 7). The
throughput is consistently below 1 Gpbs. There are two
major factors at play that prevent parallel simulation from
reaching the peak throughput in communication. First, the
synchronization required by conservative parallel simulation
can block the logical processes and thus slow down the event
processing. Second, the parallel simulator uses MPI for send-
ing and receiving events with remote simulation instances.
Marshaling packet events unavoidably generates overheads,
both in terms of the inflated message size and in terms of the
processing cost for packing and unpacking the packet data.

5.2 Real-Time Experiments

To evaluate the proposed parallel real-time simulation method,
we conducted another set of experiments, this time running
the simulation in real time. We use the same experiment
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Figure 8: Real-time simulation results.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 4 8 16 32

A
g

g
re

g
a
te

 T
h
ro

u
g

h
p

u
t 

(M
b

p
s)

Number of CBR Flows

emulation portal
peering portal

Figure 9: Results from UDP CBR traffic.

setup as shown in Figure 6. We compare three different ar-
rangements. In the first arrangement, as the base case for
comparison, we use the traditional parallel real-time simu-
lation method, that is, running simulation in real time with
conservative parallel synchronization among the multiple
instances. In the second arrangement, for the peering por-
tal implementation, we use the existent emulation portals
implemented with libpcap and raw sockets, to facilitate com-
munication between real-time simulation instances. In the
third arrangement, we use the new peering portal design,
described in Section 4.2.

The results of this experiment are shown in Figure 8. Here,
the aggregate throughput shown is calculated by summing
the throughput of all the concurrent flows at each second. To
discard the warm-up effect of TCP, we recorded the through-
put after after a few seconds when the new TCP flows have
been established. The results shows that the performance of
our proposed approach is significantly better than the tradi-
tional parallel simulation approach, in some cases more than
a factor of two. The performance of using the pcap-based
emulation portals is comparable to that of the UDP-based
peering portals when the traffic is light. When the number of
flows increases, the UDP-based peering portals outperform
the traditional pcap method.

The capping of the aggregate throughput may be attrib-
uted to the TCP congestion control algorithms as well as
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Figure 10: Mixed traffic over peering portals.

the additional processing cost related to simulating TCP. We
conducted another experiment by replacing the TCP flows
with UDP constant bit-rate (CBR) flows. Figure 9 compares
the performance of emulation portals and peering portals.
The peering portals outperform the emulation portals by a
margin of almost 2:1 in heavy traffic scenarios.

We conducted the third experiment with mixed TCP and
UDP traffic. In this experiment, we start with one CBR UDP
flow and then add another TCP flow. After that, we double
the number of TCP and UDP flows each time until we reach a
total of 64 flows. Figure 9 shows the aggregate throughput of
all flows. This experiment demonstrates simulator’s capability
to support different mix of applications. We notice that the
TCP aggregate throughput drops for 64 flows. We believe
that this is caused by the competing UDP traffic.

5.3 SDN-Capable Emulation Experiments

To evaluate our proposed parallel real-time simulation in-
frastructure for supporting SDN experiments, we set up an
experiment to recreate the scenario we studied previously
with Maxinet (in Section 2). We have 128 hosts evenly parti-
tioned between two physical machines, 64 hosts each. These
hosts are implemented as virtual machines, or Linux names-
paces, to be more specific. On each machine, the 64 hosts
are connected by a network of software routers implemented
as Open vSwitch (OVS) instances. These OVS instances are
connected as a binary tree; thus, on each machine we have
63 routers connecting the 64 hosts. The root router at each
machine is connected to the simulated network through an
emulation portal, as depicted in Figure 4. Finally, one of the
routers from the simulated network at one real-time simula-
tion instance on one machine connects with the corresponding
router at the other real-time simulation instance at the other
machine through the peering portal.

During the experiment, we set up 64 pair-wise flows be-
tween the hosts on one machine and the corresponding hosts
on the other machine. We designate 32 pairs to run TCP
flows and 32 pairs to run UDP flows. We use iperf to create
the flows. For UDP flows, We cap the UDP send rate constant
at 100 Mbps. We start the experiment with only one TCP
flow and one UDP flow, and then double number of each

 0

 200

 400

 600

 800

 1000

1 2 4 8 16 32 1 2 4 8 16 32A
g
g
re

g
a
te

 T
h
ro

u
g
h
p

u
t 

(M
b
p
s)

Number of Flows

UDP

TCP

TCP FlowsUDP Flows

Figure 11: Emulated traffic throughput.

type of flows every 30 seconds during the experiment until
all hosts are running data transfers.

Figure 11 shows the aggregate throughput for UDP and
TCP flows separately. Compared to the performance from
Maxinet (shown in Figure 3), our parallel real-time simulation
approach can achieve an overall aggregate throughput (adding
both TCP and UDP) by almost a factor of 6 (in the 16-
flow case). We see a significant decline in the aggregate
throughput for 32 UDP flows, in which case the applications
are generating 3.2 Gbps UDP traffic in total, and since each
flow needs to go through 4 hops over a series of OVS routers
before it is absorbed into the simulated network, the total
packet processing demand would add up to 12.8 Gbps, which
exceeds the processing capacity offered by the Linux operating
system.

6 CONCLUSIONS

Real-time network simulation allows experimenters to design
network experiments that include simulated networks with
emulated applications and protocols running in real operat-
ing environments. Parallel real-time network simulation, by
supporting simulation and emulation on parallel platforms,
enables at-scale experimentation with large network mod-
els potentially with thousands of emulated applications or
more, as they can be run across multiple distributed-memory
machines. In this paper, we present an alternative design
for parallel real-time simulation to increase the data pro-
cessing capability and data throughput between the parallel
simulation instances.

For parallel real-time simulation, we eliminate parallel syn-
chronization by allowing each simulation instances to advance
their simulation clocks by pegging onto the local wall-clock
time. We also propose a new type of simulation portal, which
is the mechanism used by real-time simulator to communi-
cate with an emulated network and with another parallel
simulation instance. We conducted extensive experiments
to demonstrate that the proposed technique can indeed im-
prove the overall performance of parallel real-time network
simulation.

Pinning real-time simulation to local wall-clock time as
opposed to applying global synchronization among parallel
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instances may introduce errors from imprecision in the time
synchronization across the system. The significance of such
errors would depend on the specific applications and we would
like to quantify their impact with further experiments. We
plan to investigate techniques that can potentially reduce the
errors, such as by combining with the shared-memory real-
time scheduling techniques [13] and by prioritizing real-time
events according to their urgency.

Our parallel real-time simulation technique can be read-
ily applied to studying software-defined networks. An initial
feasibility study shows that our approach not only enables a
hybrid test environment for SDN studies, but also achieves
greater performance when compared with the traditional
distributed emulation setup. In the future, we will investigate
the computational efficiency of the real-time simulator for
handling large-scale networks. We plan to further investigate
the batching and data compression techniques, especially the
ability to differentiate the processing of different types of
application traffic, such as delay sensitive and bandwidth
intensive applications. We would also like to investigate tech-
niques that can further improve the the simulation perfor-
mance and resource utilization, using techniques such as
DPDK, zero-copy, kernel packet buffering, etc. Currently, we
are only able to conduct feasibility studies for SDN. We plan
to investigate efforts in developing large-scale experiments for
different SDN solutions to prove the utility of our approach
in more practical settings.
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