
Fast and Effective Power Profiling of Program
Execution Based on Phase Behaviors

Xiaobin Ma∗, Zhihui Du∗† and Jason Liu‡
∗ Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, China
† Corresponding Author’s Email: duzh@tsinghua.edu.cn

‡ School of Computing and Information Sciences, Florida International University, USA

Abstract—Power profiling tools based on fast and accurate
workload analysis can be useful for job scheduling and resource
allocation aiming to optimize the power consumption of large-
scale high-performance computer systems. In this paper, we
propose a novel method for predicting the power consumption
of a complete workload or application by extrapolating the
power consumption of only a few code segments of the same
application obtained from measurement. As such, it provides a
fast and yet effective way for predicting the power consump-
tion of a single-threaded execution of a program on arbitrary
architectures without having to profile the entire program’s
execution. The latter would be costly to obtain, especially if it’s
a long running program. Our method employs a set of code
analysis tools to capture the program’s phase behavior and then
adopts a multi-variable linear regression method to estimate
the power consumption of the entire program. We use SPEC
2006 benchmark to evaluate the accuracy and effectiveness of
our method. Experimental results show that our power profiling
method achieves good accuracy in predicting program’s energy
use with relatively small errors.

I. INTRODUCTION

High-performance computing platforms, large-scale data
centers, and cloud computing facilities are among the largest
consumers of energy. According to a report issued by the Natu-
ral Resources Defense Council [1], the electricity consumption
of U.S. data centers in 2013 is estimated to have reached
91 billion kilowatt-hours. The total energy demand of data
centers has been projected to increase from 1.3% of worldwide
electricity supplies in 2010 to 8% in 2020 [2]. By then, their
carbon footprint will exceed that of the airline industry.

Power consumption has thus become an important deci-
sion variable for scale and performance for systems and
applications. Understanding energy use of the applications
and programs running on the high-performance computing
platforms and data centers is a critical step in optimizing
power management, resource allocation, and scheduling of
program execution in order to reduce the systems’ overall
power consumption.

Existing approaches to power profiling include physical
measurements, either by using special hardware instruments
to measure power consumption at various computer compo-
nents (e.g., [3]–[5]), or through embedded power meters and
on-board sensors (e.g., [6]–[8]). Physical measurements can

provide accurate power monitoring and power measurement
in real time (subject to certain time granularity). In particular,
with a programming interface, an embedded power meter
can be of great help to designers of power-aware systems
and applications. However, physical measurements report only
the power consumption of a specific component or an entire
system. It is difficult to translate measurements to energy
use of individual application programs. Furthermore, physical
measurements alone cannot be used for prediction of future
power consumptions as they report only the current state.

Power profiling also includes analytical approaches. In this
case, simulation can be used to estimate power consumption
of various components at the microarchitectural level [9]–[12].
While simulation may provide a cycle-accurate estimate of
power consumption from program execution, it can also be
extremely time-consuming. In addition, simulation oftentimes
considers only simplistic scenarios and ignores more complex
effects, such as those from real operating systems (I/O, multi-
tasking, and so on). Another type of analytical approach is to
estimate power consumption by establishing correlations from
the program’s hardware performance events (e.g., [13], [14]).
These approaches can provide power profiling more efficiently,
but requires off-line analysis of logs.

In this paper, we present a fast and effective program power
profiling technique based on program phases. We observe that
applications exhibit distinct behaviors during execution, which
often fall into repeating patterns, called program phases [15].
These phases have several important features:
• A program may consist of many program phases, which

alternate and oftentimes repeat throughout the program’s
execution.

• Program phases occur at large time scales (typically
consisted of execution of hundreds of millions to tens
of billions of instructions).

• Within each program phase, the performance metrics of
the program, such as the cache miss ratio, branch mispre-
diction rate, execution speed (measured in instructions per
cycle), as well as power consumption, maintain relatively
stable.

• Between consecutive program phases, the program’s per-
formance metrics change significantly (sometimes by sev-
eral orders of magnitude). They change synchronously,978-1-5090-5117-5/16/$31.00 c©2016 IEEE

although not necessarily proportionally.
Based on these observations, we propose to correlate pro-

gram phase detection with power prediction. A program’s
execution is divided into intervals, each of which consists of a
fixed number of instructions of execution (say, 100 million). A
program phase can be defined as a set of intervals with similar
behavior [15]. Note that the intervals belonging to the same
program phase may not be adjacent to one another in time.

To detect program phases, we use an offline program
analysis tool, called simpoint [16], which clusters the intervals
according to the ratios in which different regions of the
program (basic blocks) are being executed over time. We note
that such classification can also be achieved online through
dynamic branch profiling [15]. However, in this study, we limit
to only off-line analysis.

For each program phase found, we choose one repre-
sentative interval (say, at the centroid of the cluster) and
measure its power consumption. This can be achieved using
physical power measurement tools. In our study, we use the
Running Average Power Limit (RAPL) toolkit designed for
microarchitectures with embedded sensors (such as Intel’s
Sandy Bridge) [6]. To assess the power consumption of
other intervals, we simply calculate the distance between the
intervals in terms of the executed instructions, which we call
Executed Instruction Vector (EIV), and use a similarity metric
to estimate its power consumption based on multi-variable
linear regression.

EIV is a vector with elements each representing the number
of times a certain type of instruction has been executed with an
interval. For instance, if an interval contains 2 mov instructions
and 3 add instructions, the values of the elements in the
interval’s EIV representing the two instructions will be 2
and 3, respectively. In doing so, we can easily define the
distance (which is the inverse of similarity) between two
arbitrary intervals using an algebraic distance between the
two EIVs. Note that the EIV only represents the mixture
of the instructions being executed within an interval without
considering the order in which they are executed. We show
that this first-order approximation in most cases is sufficient
to identify different power regimes within a program. Also
note that, in practice, one does not need to maintain a high
dimension vector for each interval, since usually only a subset
of instruction types are present within an interval. Therefore,
we can simply use a dictionary that maps from the instruction
type to the number of occurrences as a succinct way of
representing EIV.

The major contributions of this paper are two-fold. First,
we show that using program phase behaviors we can quickly
establish the baseline for the program’s power consumption.
Second, we show that using a simple similarity metric (by
comparing EIVs between the intervals) one can predict power
consumption of the entire program’s execution with good
accuracy. Using this method, we can effectively predict the
power consumption of long running programs based on mea-
surements of only a small set of intervals. Presumably, our
method can also be extended for online power prediction if one

can incorporate our method with effective online classification
techniques for program phase detection and using online power
measurement tools for power estimation. In this paper, we
focus only on static power profiling, and defer the online
methods for future work.

The rest of the paper is organized as follows. In section II,
we discuss background and related work. We first provide
an overview of our power profiling method in section III,
followed by a detailed discussion of the specific techniques
in sections IV and V. We present validation experiments and
the results in section VI. We discuss possible ramifications of
our approach in section VII and finally conclude our paper in
section VIII.

II. BACKGROUND AND RELATED WORK

Power consumption is a measure of rate at which a computer
system is consuming energy. It is a reflection of how various
components of the computer is utilized over time. While most
programs show variable behavior during their run time, they
typically exhibit a certain amount of repetitive behavior—for
example, a numeric kernel loops through the same regions of
an array or a matrix at certain periods of time. Program phase
analysis is a method of identifying such repetitive behavior; it
can be used for workload characterization, resource manage-
ment, dynamic performance and power optimization, and so
on.

During a program’s execution, it passes through several
phases where its hardware resource requirements and con-
sequently its performance characteristics vary. One effective
method for detecting program phases is by observing changes
in the program’s memory demand, such as the working set,
which can be defined as a collection of memory locations
recently referenced by a program [17]. For example, Dhodap-
kar and Smith [18] proposed a phase detection method using
working set signatures, which are highly compressed working
set representations using only a small number of bytes (on the
order of 32-128 bytes).

Program phases can also be detected by directly observing
the program’s execution trace. Sherwood et al. [19] introduced
the concept of Basic Block Vectors (BBV). A basic block is
a straight-line sequence of instructions that has but one entry
point and one exit point (in particular, no branches during
execution). When a program is executed, it runs through many
basic blocks, each of which may be executed multiple times.
By taking a snapshot of the number of times each basic block
is executed within a sampling period (i.e., a fixed number of
executed instructions), one can obtain a vector representing the
proportion of basic block executions, which can then be used
as a signature of the program’s activities during this period.

BBV can be used to identify program phases using clus-
tering techniques [20]. To find how intervals of program’s
execution relate to one another, we can quantify similarity
between two intervals as the Manhattan distance between their
basic block vectors. Using this metric, one can cluster all the
intervals into a small set of groups, where each group can
be identified as belonging to a distinct program phase and

subsequently represented by a sample point chosen to be the
closest to the group’s centroid. This method has been shown
to be very effective in detecting program’s phase behaviors. In
addition, it can be extended for online phase detection since the
basic block executions can be approximated using instruction
counts separated by branches [15].

Our power profiling method proposed in this paper uses
Sherwood’s phase analysis scheme. In particular, we establish
a correlation between distinct regimes of power consumption
and program phases. Our method is based on the observation
that the program’s phase behavior, shown as distinct stable
periods in performance and power consumption, is directly a
function of the code being executed.

Contrary to our method, Isci and Martonosi [21] proposed
a method of identifying a program’s phases through its power
behavior. Analogous to BBV, they use a power vector, which
consists of estimated power values for 22 processor com-
ponents, to be the signature for the intervals. Accordingly,
they defined a similarity metric and used a thresholding
algorithm to partition distinct power behaviors into groups.
Their method can be seen as complementary to ours, as both
methods consider correlation between program behavior and
power consumption. Their method uses power measurements
to identify phases, while our method uses phases to predict
power consumption. We note, however, that our method does
not depend on detailed power measurements of the system.
We take advantage of advanced program analysis tools, which
are considered to be more mature today and should be readily
available in most modern systems.

III. OVERALL DESIGN

Our power profiling method is based on the identification of
program phases. In particular, we use Sherwood’s method for
detecting phases [15]. A program’s execution is divided into a
sequence of slices, called intervals, each with a fixed number
instructions (we chose to use 100 million executed instructions
per interval). Separate tools are used to obtain the basic block
vectors (BBVs) for the intervals (which we describe in the
next section), in addition to those included in the distribution
of the simpoint tool.

Simpoint is an offline program analysis tool developed by
Sherwood et al. at UCSB [16]. It takes as input a list of BBVs,
one for each interval, and then runs the k-means algorithm
to cluster the intervals. The result grouping is output as the
phases. To save computational time, simpoint uses random
linear projection to reduce the dimensionality of the BBVs. To
determine the final number of groups, simpoint first runs the
clustering algorithm with different k and then chooses the one
with the best fit (i.e., having the highest Bayesian information
criterion index).

Although program phases can be identified using simpoint,
we still need to establish correlation between distinct regimes
of power consumption and program phases. To obtain a power
model, we need to solve two problems:

1) We need a method to succinctly describe program be-
haviors using necessary measurements that can help
determine power consumption at each interval.

2) We need a method to effectively predict power con-
sumption based on the measurements collected at each
interval.

To address the first problem, we recognize that program’s
power results from running the program code that engages
with different parts of the system, such as processing (integer,
floating-point, branch prediction) and memory access (caches
at different levels, TLB). In [22], the authors proposed to
measure the power consumption at 22 different components at
the microarchitecture. We resort to applying simple program
analysis that can be piggy-backed to the calculation of BBVs
so that our method can be used together with simpoint during
phase detection.

While power consumption can be largely influenced by the
intensity of numerical calculations, memory access patterns,
and so on, it is ultimately determined by the type and the
number of instructions being executed, which can be ob-
tained using program analysis. We define a vector, called the
Executed Instruction Vector (EIV), to represent the executed
instructions at each interval. EIV can be derived from BBV.
In this case, we expect our method can be extended so
that EIVs can be obtained during the program’s execution
since BBVs can be approximated using online classification
methods [15]. In section IV we discuss the details of our
method for obtaining EIV.

To address the second problem above, we need to find an
effective method to map from the workload characteristics
of the intervals to their power consumption. Many power
models exist. We choose to use an empirical method. Once
the program phases have been determined, we can measure
the power consumption of the representative intervals, one for
each identified program phase. We can choose the interval
nearest to the centroid of the group corresponding to the
program phase as the representative interval. Power estimation
of the interval can be achieved by using measurement tools,
such as RAPL. RAPL is Running Average Power Limit toolkit
developed by Intel to measure power of CPU and memory. It
relies on Model Specific Registers (MSRs) that report CPU
and memory access events to estimate power consumption [6].

Once we determine the power consumption of the represen-
tative intervals, we can predict the power consumption of other
intervals using a similarity metric. We use the Euclidean dis-
tance between the EIVs to represent the similarity between the
intervals and apply a multi-variable linear regression method to
determine the power consumption of all other intervals based
on the measured power consumption at the representative
intervals. The details of our method are discussed in section V.

IV. EXECUTED INSTRUCTION VECTORS

A running program consists of a set of instructions executed
in order. We want to characterize the distinct behavior of a
program, from which its power consumption can be derived.
This can be achieved through static program analysis and by

inspecting the program’s execution log. In this section, we
describe a method that can be piggy-backed with the existing
method for detecting program phases.

Our method allows for counting the number of executed
instructions of various types during an interval. Currently, we
focus only on the type of instructions and ignore the effect
from the sequence of their execution on power consumption.
We have two reasons. First, as shown later in this section,
the number of executed instructions during an interval can be
obtained relatively easily using static program analysis from
the basic block vectors created for phase analysis. Second,
in our method, the power consumption of an interval is first
determined by the program phase (i.e., the group which the
interval belongs to). Since different intervals in same program
phase are expected to differ only slightly with respect to
the frequency of visits to the same set of basic blocks, the
difference in the power consumption between them is more
likely attributed to the difference in the numbers of executed
instructions, rather than their execution order.

In the rest of this section, we describe a relatively straight-
forward way to count the number of executed instructions
of different types within an interval. A basic block vector is
a vector with h elements, one for each basic block in the
program. Let B be the set of basic blocks in the program
(i.e., h = |B|). During an interval, let vi be the number of
times program execution visits basic block i (where i ∈ B).
Let si be the total number of instructions in basic block i.
The element in the basic block vector is therefore the number
of visits to the basic block vi, multiplied by the number of
instructions of the basic block si. The vector is the normalized
by dividing each element by the sum of all elements in the
vector [15]. More formally, we denote the basic block vector
of the current interval as BBV = (b1, b2, · · · , bh), where bi =
visi(

∑
k∈B vksk)

−1. The interval length, denoted by L, is
fixed (in our studies, we use 100 million instructions). That is,
the denominator is approximately the same: L ≈

∑
k∈B vksk.

The basic block vector is then used to cluster the intervals
into groups, identified as program phases. However, it does
not contain information about what specific instructions are
being executed. This information would be important for
characterizing the power consumption of the intervals. We
define the Executed Instruction Vector (EIV) to be a vector,
where each element represents the number of instructions
being executed for a specific type of instruction during an
interval. More formally, EIV = (e1, e2, · · · , em), where m is
the total number of instruction types at the target architecture.

If we know the distribution of the type of instructions at
each basic block, we can calculate EIV from BBV. More
specifically, we can calculate the number of executed instruc-
tions of each type using the number of instructions belonging
to that type in each basic block multiplied by the number
of times program execution visits the basic block during the
interval. More formally, let Ii = (ai1, ai2, · · · , aim) be the
instruction distribution vector for basic block i, where aij
is the number of instructions belonging to type j. We can
calculate the elements of EIV: ek =

∑
i∈B aikvi, where vi

Fig. 1. Using valgrind to obtain instructions of basic blocks.

is the number of times program execution visits basic block
i. We can derive vi from BBV: vi = biL/si, where L is the
interval length and si =

∑
0≤k<m aik is the total number of

instructions in basic block i.
In our implementation, we use valgrind [23] to generate both

BBV and EIV. BBV is given to simpoint [16], which uses
it to detect program phases. We use EIV to estimate power
consumption (described more in the next section). Valgrind
is an open source instrumentation framework for building
dynamic analysis tools for debugging and profiling, including
an experimental tool for generating basic block vectors. The
tool already generates important information for each basic
block, including its starting address, the name of the function
containing the basic block, and the number of instructions
in the basic block. Conceptually, one can directly use the
information to obtain the instruction distribution vector using
a disassembler (such as objdump). In practice, however, we
encountered several problems that prevented us from correctly
identifying the function names in dynamically linked libraries
and as a result we chose a different path.

We modified the code in valgrind for analyzing the basic
blocks. Every time a basic block is entered that has never
visited before, in addition to just counting the number of
instructions in the basic block, we write the instructions out
to a log file. Later we use a disassembler (in our case, GDB)
to restore the instructions belonging to each basic block. The
process is illustrated in Fig. 1.

V. POWER ESTIMATION VIA MULTI-VARIABLE LINEAR
REGRESSION

We would like to estimate the power consumption of the
entire program using the power consumption at a few reference
intervals. For each program phase, we choose to use the
interval that is closest to the centroid of the group as the
representative of all intervals belonging to that phase. We
establish a similarity metric based on the Euclidean distance

 68

 69

 70

 71

 72

 73

 74

 75

 50 100 150 200

P
o

w
e

r
(W

)

Interval Sequence

(a) Using linear interpolation

power measurement
power prediction

 68

 69

 70

 71

 72

 73

 74

 75

 50 100 150 200

P
o

w
e

r
(W

)

Interval Sequence

(b) Using perf

power measurement
power prediction

Fig. 2. Power prediction accuracy using linear interpolation vs. using perf (for benchmark 473.astar).

between the executed instruction vectors of the intervals and
use the coefficients calculated using a multi-variable linear
regression method to project the power consumption of all the
intervals from the representatives.

Let c1, c2, · · · , cg be the representative intervals (one from
each program phase), where g is the total number of program
phases. We quantify the similarity between two intervals,
a and b, using the Euclidean distance between their EIVs.
Suppose EIV (a) = (ea,1, ea,2, · · · , ea,m) and EIV (b) =
(eb,1, eb,2, · · · , eb,m), the similarity between a and b can be
defined as:

αa,b =

√ ∑
0≤k<m

(ea,k − eb,k)2 (1)

For any interval k, we can calculate the similarities from k to
all representative intervals, which we denote using a vector:
xk = (αk,c1 , αk,c2 , · · · , αk,cg)

T .
We define matrix X = (xc1 , xc2 , · · · , xcg)T . Let y be

the vector containing the power consumption at all repre-
sentative intervals. That is, y = (P (c1), P (c2), · · · , P (cg))T ,
where P (k) is the power consumption for interval k. The
linear regression model can be expressed as y = Xβ + ε,
where β = (β1, β2, · · · , βg)T are the coefficients and ε =
(ε1, ε2, · · · , εg)T represent the noise. We can use the standard
multi-variable linear regression method to solve for β, and
then use them to predict the power consumption of any interval
k, using the equation xT

k β.
To estimate the power consumption at the representative

intervals, currently we use measurements from RAPL [6].
RAPL, or Running Average Power Limit toolkit, provides
the energy and power consumption information through a
set of counters. It is a software power model that relies on
performance-related events recorded in hardware performance
counters and an I/O model to estimate energy usage.

RAPL collects power consumption based on time. The
intervals for phase detection, however, use instruction count
(say, 100 million). There can be discrepancies in this case.
A straightforward approach is to apply linear interpolation

to estimate power consumption at the interval boundaries.
We found that linear interpolation can provide good accuracy
for programs whose power consumption do not changed
significantly. However, the problem with this approach is that
it can introduce significant errors when the boundaries of
the time window used by RAPL belong to different phases
with significantly different power regimes. Fig. 2(a) shows
an example of power prediction of a benchmark program
using linear interpolation; significant errors can be observed
especially in the middle section of the plot.

To solve this problem, we use a tool, called perf, which
is available on Linux platforms. The tool is is able to record
both the instruction count and the execution time of an interval.
Having an accurate representation of the power consumption
for all representative intervals is essential for the overall
prediction accuracy of the entire program’s execution. Using
perf turns out to be a far more reliable method for power
prediction than linear interpolation. Fig. 2(b) shows the same
benchmark example using perf. The power prediction in this
case is quite accurate. The reason is that we use the power
consumption of the representative intervals as the training set.
As such, any errors occurred in matching the power data
from RAPL and the intervals used by simpoint for phase
detection can be amplified. Our experiment using the SPEC
2006 benchmarks shows that on average using perf can
reduce relative error from 5.3% using linear interpolation
to 3.8%, and the standard deviation from 5.53 using linear
regression to 4.79.

Another issue related to using RAPL is that the power
measurement done by RAPL is at the processor level, not
at the core level. This is because the event counters, called
MSR, used by RAPL to register performance-related events
for the software power model are integrated with the physical
processor, not core. In a processor with high core count (such
as the one we use that contains 12 cores), running a single
threaded benchmark (occupying a single core) may contribute
only a small proportion of the total power consumption of
the entire processor. In fact, the other cores on the same

TABLE I
BENCHMARK RESULTS

Benchmark Phases Intervals σ Error
401.bzip2 9 180 2.06 0.020
403.gcc 6 43 7.79 0.084

410.bwaves 5 808 14.24 0.082
429.mcf 14 31 3.12 0.027
433.milc 10 332 6.80 0.058

435.gromacs 10 47 3.42 0.027
436.cactusADM 4 92 1.63 0.015

437.leslie3d 16 399 1.13 0.006
444.namd 23 606 1.13 0.005

445.gobmk 9 384 4.97 0.028
453.povray 3 24 3.42 0.100
456.hmmer 7 142 1.46 0.016
458.sjeng 4 143 1.99 0.009

464.h264ref 20 851 5.60 0.030
465.tonto 17 35 5.46 0.061
470.lbm 7 66 1.75 0.009

471.omnetpp 3 17 9.26 0.090
473.astar 12 235 5.33 0.025

482.sphinx3 7 68 2.91 0.018
average 19 356 4.40 0.038

processor may be loaded to run other kernel threads that
are not controlled in our experiment. To solve this issue,
we decided to run multiple instances of the same single
threaded benchmark program simultaneously so as to occupy
all cores of a processor. So long as the processes are running
synchronously through the phases, which is the case given
that in our experiments each interval consists of 100 million
instructions, the power measurement collected by RAPL at the
processor level would be simply magnified by the number of
cores in the processor.

In practice, we use a for-loop to launch the different
instances of the same benchmark program (using the same
runtime parameters). In the experiment, the length of the
interval is around 50 milliseconds. We have observed that the
maximum time difference between the first and last instances
of the benchmark never exceeds 20 milliseconds. There would
be a slight discrepancy in the power measurement; however,
as long as the neighboring intervals of a representative interval
belong to the same phase as the representative interval, it
would have very little effect on the accuracy of the power
estimation.

VI. EXPERIMENTS

We use SPEC CPU 2006 for our experiments. SPEC CPU
2006 is an industry standard CPU performance benchmark.
It contains two sets of benchmark programs: CINT2006 has
12 programs for integer performance test and CFP2006 has
17 programs for floating point performance test. We chose
19 single-threaded benchmark programs that can execute long
enough for our model to capture the power behavior. The
experiments were conducted on a Linux workstation with a 12-
core Intel R© Xeon R© CPU E5-2670 v3 and 128 GB of memory.
We used gcc compiler version 4.1 with optimization level 2
(-O2) to compile all the benchmark programs.

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 5 10 15 20 25 30

P
o

w
e

r
(W

)

Interval Sequence

benchmark 429.mcf

power measurement
power prediction

Fig. 3. Power measurement and prediction for benchmark 429.mcf.

The results are shown in Table I. The “Intervals” column
shows the number of intervals (each with 100 million in-
structions) in the execution of each benchmark program. The
“Phases” column lists the number of program phases (i.e.,
clusters) identified by simpoint. We use standard deviation
(σ) and relative error (“Error”) to measure the accuracy of
our model. For all 19 chosen benchmark programs, there are
a total of 6,764 intervals and 361 phases detected. The same
number of representative intervals as the number of phases
were used to train our model (that’s 5.3%).

The result is satisfactory. The average standard deviation
among all chosen benchmark programs is 4.79 and the average
relative error is 3.8%. The maximum relative error is 10%
(for benchmark 453.povray). In general, we observe that
the accuracy of our model is better for benchmarks whose
power consumption is more or less stable during the execution
of the program; the model generates slightly higher errors
for benchmarks whose the power consumption fluctuates fre-
quently. Overall, our model shows good accuracy in predicting
the power.

Fig. 3 shows a simple example (in this case, benchmark
429.mcf), which we use to show how our model is taking
advantage of a few training data points to estimate the power
consumption of the entire program. The program’s execution
is divided into 31 intervals grouped into 14 phases. We use the
measured power consumption of the 14 representative intervals
to train the model, which subsequently estimates the power
consumption for the rest of the intervals. Solid circles in the
figure are those used used to train the model; they are the
measured power of the intervals selected as the representatives
(closest to the centroid of the respective phase). The hollowed
circles in the figure are estimated power from our model.

It is important that we choose representative intervals as the
training set for improved prediction accuracy. Fig. 4(a) shows
the results from the power prediction model if we simply select
the intervals randomly. The results show large variations and
poor prediction accuracy. Fig. 4(b) shows the results of using
representative intervals from phase detection. Simpoint selects

 68

 68.5

 69

 69.5

 70

 70.5

 71

 71.5

 72

 100 200 300 400 500 600

P
o

w
e

r
(W

)

Interval Sequence

(a) Random Training Set Selection

power measurement
power prediction

 68

 68.5

 69

 69.5

 70

 70.5

 71

 71.5

 72

 100 200 300 400 500 600

P
o

w
e

r
(W

)

Interval Sequence

Phase Centroid Training Set Selection

power measurement
power prediction

Fig. 4. The importance of training set selection (results for benchmark 444.namd).

the intervals closest to the centroid of each detected phase.
The method shows far better results: the standard deviation
is reduced from 12.51 to 1.023, and the relative error from
22.27% to only 2.66%.

VII. DISCUSSION

Our preliminary results show that the power model is
effective; yet several issues exist which would surely warrant
further investigation.

First, we can reduce the dimensionality of the instruction
distribution vectors collected at the basic blocks. By doing so,
we can reduce the computation and memory cost for collecting
them and for computing the similarities. Many instructions are
simply variations of one another; for example, the conditional
move instructions come with many forms: cmova, cmovb,
cmove, cmovg, and many others. By combining similar
instruction types, according to their primary function and the
expected power consumption (e.g., arithmetic operations, data
transfers, control flows, and I/O instructions). we can group
the instruction set into fewer categories.

Second, we use the Euclidean distance to quantify the
similarity in power consumption between the intervals, in
which case all instruction types contribute equally to the
energy use. This is obviously problematic. For example,
compute intensive operations (such as arithmetic and logic
operations) should have a different power profile than those
instructions involving memory accesses or engaging with I/O
operations. Consequently, we should use different weights for
different types of instructions when calculating the similarities
according to their relative effect on the power consumption.
We believe the weights can be obtained through measurements.

Third, we use the instruction distribution as the first-order
indicator for the difference in the power consumption of the
intervals. While instruction types do play an important role
in determining the energy use, the execution order of the in-
structions may also be important. Our method can be extended
to indirectly include the effect of the execution sequence,
by collecting statistics related to computation intensity at the

basic blocks, e.g., the ratio between the number of executed
instructions and the memory operations. Another place worthy
of further investigation is to consider the execution sequence
of the basic blocks. They may also influence the power
consumption.

Fourth, the effectiveness of the linear regression method
may depend on the size of the training set, which in our case
is the number of identified program phases, which could be
either too many or too few. We have not fully investigated
such effects. Also, the elements in the training set may have
unequal variance (heteroskedasticity), in which case the level
of noise in the data may be dependent on what region the
intervals are located in the feature space. Furthermore, we need
to understand that linear regression could be fundamentally
limited in that the power profile from instructions may not be
linear at all.

Last, a fundamental limitation of our current approach is
that the power prediction model is limited to single thread
execution only. In a multithreaded setting, the program phase,
for general applications, may not be as obvious as it would
depend on the mixing of separate threads of control, which
can oftentimes be nondeterministic. For many scientific appli-
cations, however, such as those using OpenMP, the programs
may still exhibit a good deal of phase behavior. In this case,
our method will still apply.

VIII. CONCLUSIONS

During the execution, a program typically exhibits a set of
distinct behaviors or phases that are often repeated throughout
the execution. These phases occur at large time scales (tens of
milliseconds or even seconds), during which the program’s
performance and power consumption stay relatively stable.
Based on this observation, we propose a new power pre-
diction method that extends a cluster-based program phase
detection scheme. We apply program analysis to identify the
types and the number of instructions being executed during
fixed intervals, and we show that by coupling that with the
program phase behaviors we can quickly establish a baseline

for predicting the program’s power consumption. In particular,
we show that, using the power measurement of a few represen-
tative intervals, we can apply a multi-variable linear regression
method to estimate the power consumption of entire program
with good accuracy.

Our method is fast and effective for profiling the power
consumption by analyzing program execution. In future work,
we would like to extend our method to incorporate online
power prediction. In particular, we would like to integrate an
online classification technique for program phase detection and
couple that with advanced power models, to order to achieve
accurate online power prediction.

ACKNOWLEDGMENT

This research is supported in part by the National Nat-
ural Science Foundation of China (Nos. 61440057 and
61363019), the Sci-Tech Interdisciplinary Innovation and Co-
operation Team Program of the Chinese Academy of Sciences,
the Specialized Research Fund for State Key Laboratories,
MOE Research Center for Online Education Foundation (No.
2016ZD302), and the National Key Research and Develop-
ment Program of China (No. 2016YFB1000602). We would
like to thank the anonymous reviewers for their constructive
comments.

REFERENCES

[1] Natural Resources Defenese Council (NRDC), “Data center efficiency
assessment, scaling up energy efficiency across the data center indus-
try: evaluating key drivers and barriers,” http://www.nrdc.org/energy/
data-center-efficiency-assessment.asp, 2014.

[2] J. Koomey, “Growth in data center electricity use 2005 to 2010,”
Analytics Press, August 2011.

[3] R. Ge, X. Feng, S. Song, H. C. Chang, D. Li, and K. W. Cameron, “Pow-
erPack: Energy profiling and analysis of high-performance systems and
applications,” IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 5, pp. 658–671, 2010.

[4] J. H. Laros, P. Pokorny, and D. DeBonis, “PowerInsight - a commodity
power measurement capability,” in Proceedings of the 2013 International
Green Computing Conference (IGCC), 2013, pp. 1–6.

[5] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield, “PowerMon: Fine-
grained and integrated power monitoring for commodity computer sys-
tems,” in Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon),
2010, pp. 479–484.

[6] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Ra-
jwan, “Power-management architecture of the Intel microarchitecture
code-named Sandy Bridge,” IEEE Micro, vol. 32, no. 2, pp. 20–27,
2012.

[7] J. Demmel, A. Gearhart, J. Demmel, and A. Gearhart, “Instrumenting
linear algebra energy consumption via on-chip energy counters,” UC
Berkeley, Tech. Rep. UCB/EECS-2012-168, 2012.

[8] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Ra-
jwan, “Power-management architecture of the Intel microarchitecture
code-named Sandy Bridge,” IEEE Micro, vol. 32, no. 2, pp. 20–27,
2012.

[9] Mentor Graphics Corporation, “QuickPower,” 1997.
[10] Synopsys Corporation, “Powermill data sheet,” 1999.
[11] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The design

and use of SimplePower: A cycle-accurate energy estimation tool,”
in Proceedings of the 37th Annual Design Automation Conference
(DAC’00), 2000, pp. 340–345.

[12] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in Proceedings of
the 27th International Symposium on Computer Architecture (ISCA’00),
2000, pp. 83–94.

[13] R. Joseph, D. Brooks, and M. Martonosi, “Live, runtime power mea-
surements as a foundation for evaluating power/performance tradeoffs,”
in Proceedings of the Workshop on Complexity Effectice Design, 2001.

[14] C. Isci and M. Martonosi, “Runtime power monitoring in high-end pro-
cessors: methodology and empirical data,” in Proceedings the 36th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2003,
pp. 93–104.

[15] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Dis-
covering and exploiting program phases,” IEEE Micro, vol. 23, no. 6,
pp. 84–93, 2003.

[16] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SimPoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction-level
Parallelism, pp. 7:1–28, 2005.

[17] P. J. Denning, “Working sets past and present,” IEEE Transactions on
Software Engineering, vol. SE-6, no. 1, pp. 64–84, 1980.

[18] A. S. Dhodapkar and J. E. Smith, “Managing multi-configuration
hardware via dynamic working set analysis,” in Proceedings of the 29th
Annual International Symposium on Computer Architecture (ISCA’02),
2002, pp. 233–244.

[19] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in applications,”
in Proceedings of the 2001 International Conference on Parallel Archi-
tectures and Compilation Techniques(PACT’01), 2001, pp. 3–14.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” ACM SIGARCH Computer
Architecture News, vol. 30, no. 5, pp. 45–57, 2002.

[21] C. Isci and M. Martonosi, “Identifying program power phase behavior
using power vectors,” in Proceedings of the 2003 IEEE International
Workshop on Workload Characterization, 2003, pp. 108–118.

[22] ——, “Runtime power monitoring in high-end processors: Methodology
and empirical data,” in Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, 2003, p. 93.

[23] Valgrind, http://valgrind.org/.

