
An Integrated Interconnection Network Model for
Large-Scale Performance Prediction

Kishwar Ahmed
Mohammad Obaida

Jason Liu
Florida International University

{kahme006, mobai001, liux}@fiu.edu

Stephan Eidenbenz
Nandakishore Santhi
Guillaume Chapuis

Los Alamos National Laboratory
{eidenben, nsanthi, gchapuis}@lanl.gov

ABSTRACT
Interconnection network is a critical component of high-
performance computing architecture and application co-design.
For many scientific applications, the increasing communica-
tion complexity poses a serious concern as it may hinder the
scaling properties of these applications on novel architec-
tures. It is apparent that a scalable, efficient, and accurate
interconnect model would be essential for performance eval-
uation studies. In this paper, we present an interconnect
model for predicting the performance of large-scale applica-
tions on high-performance architectures. In particular, we
present a sufficiently detailed interconnect model for Cray’s
Gemini 3-D torus network. The model has been integrated
with an implementation of the Message-Passing Interface
(MPI) that can mimic most of its functions with packet-
level accuracy on the target platform. Extensive experi-
ments show that our integrated model provides good accu-
racy for predicting the network behavior, while at the same
time allowing for good parallel scaling performance.

CCS Concepts
•Networks→Network simulations; •Computing method-
ologies → Modeling and simulation;

Keywords
High-performance computing; interconnection network; per-
formance prediction; hardware software co-design

1. INTRODUCTION
As we move towards exascale computing, the collapse of

hardware scaling laws has led to the emergence of novel
hardware architecture designs in high-performance comput-
ing (HPC) that include accelerator technologies (such as
GPUs), high core-count compute nodes with shared mem-
ory, deep instruction pipelines, deep memory hierarchies
with aggressive memory prefetching strategies, and sophis-
ticated branch prediction for speculative execution. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’16, May 15-18, 2016, Banff, AB, Canada
c© 2016 ACM. ISBN 978-1-4503-3742-7/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901378.2901396

new architectural features enable massive parallelism and
latency hiding that in principle allow software and codes to
scale to next-generation HPC systems. For example, Intel’s
Knight’s Corner node features 61 cores with shared main
memory (albeit at a non-uniform access speed) that enables
thread-level parallelism. In contrast, NVIDIA’s Tesla GPU
accelerators have up to 3, 000 CUDA Cores per CPU en-
abling vector parallelism. Different parallelization strate-
gies were adopted in the these cases. CPU-based nodes use
a significant fraction of their chip real estate to implement
pipelining logic (to enable instruction-level parallelism) and
memory prefetching logic at different cache levels (to enable
latency hiding), whereas GPU designs tend to maximize core
counts with arithmetic logic units (ALUs) for enabling vec-
tor parallelism.

These novel hardware technologies have turned out to be
disruptive to existing software portfolios in many industries
and government branches because simple re-compilation does
not exploit these features very well. This in turn has led to
massive code re-factoring in many sectors, including—and
perhaps most pronounced—among users of high-performance
computational physics code. Fast performance prediction
of how well a new computational method or code will run
on a novel architecture HPC platform is a key technique to
achieve exascale computing because it allows the quick iden-
tification of algorithmic ideas that will or will not pair well
with novel architecture platforms. Performance prediction
on how fast and how energy-efficient a code will run on a
platform is at the heart of computational co-design.

Performance prediction of large-scale parallel computers
consisting thousands of node and more is a challenging task.
In recent years we have witnessed the fast growth in su-
percomputer design that can perform operations at scale of
quadrillions of calculations per second. The tremendous rise
in the computational power is in part attributed to the gov-
ernment agencies that have been supporting (and encour-
aging) the growth of large-scale supercomputing infrastruc-
tures. For example, significant investment by the U.S. De-
partment of Energy (DOE) on building state-of-the-art su-
percomputers through programs (such as FastForward [39],
and recently FastForward 2 [38]) support the fact that ex-
ascale computing will continue to receive attention in years
to come. Consequently, the community faces a significant
challenge for complex large-scale scientific and engineering
applications to keep up and take full advantage of the fast
growth of supercomputing capabilities.

The Performance Prediction Toolkit (PPT) is a DOE co-
design project that aims at developing a comprehensive pre-

diction capability for computational physics code, algorithms
and methods that perform on novel hardware architectures,
thus enabling fast adoption of new code by quickly identi-
fying and ruling out unsuccessful refactoring scheme. PPT
models both hardware and software at levels of abstraction
that are appropriate to the concrete question at hand, by
applying a mix of discrete-event simulation, stochastic and
analytical models at various layers on the software and hard-
ware stack.

With changes in HPC system so frequent, it is imperative
that performance prediction of future HPC system is prop-
erly realized. Of particular importance is the model for the
interconnection networks as it is critical to the understand-
ing of the communication cost and thus the performance lim-
itations of large-scale applications on high-performance com-
puting infrastructures. There has been significant research
effort on performance prediction and modeling of extreme-
scale interconnection network (e.g., [22,23,32,33]). However,
few of these research efforts consider the effect of complex,
dynamic application behaviors, such as the computational
physics code, on the underlying large-scale interconnection
network.

The contribution of this paper is three-fold. First, we
present PPT’s interconnection network model, which in-
cludes as an example a sufficiently detailed model of Cray’s
Gemini 3-D torus network. Second, our interconnection net-
work model has been fully integrated with an implementa-
tion of the Message Passing Interface (MPI) model, which
mimics all common MPI commands, including various send
and receive functions, as well as collective operations. The
MPI model can achieve packet-level accuracy at the target
platforms. Third, we present extensive validation studies of
our MPI and interconnect models, including a trace-based
study using data obtained from executing real-life compu-
tational physics code on an existing high-performance com-
puting platform.

PPT relies on the Simian [37], a parallel discrete-event
simulation engine, and essentially consists of libraries of
hardware models, application models, and middleware mod-
els. PPT, along with Simian, is designed to be lean, written
in Python (or alternatively Lua) with minimal reliance on
third-party libraries in an effort to keep the code simple,
understandable, and yet offer high performance. In this pa-
per, we report on scaling runs of our interconnect model,
which confirm the scalability of the underlying simulation
engine, albeit also point to some performance weaknesses in
the Python version of Simian, which suggest directions of
our further efforts.

The rest of this paper is organized as follows. Section 2
provides the background and related work. Section 3 pro-
vides an overview of our design. We provide the details of
our model for the Gemini interconnection network in Sec-
tion 4 and for the message-passing interface in Section 5.
We conducted extensive experiments to validate our inte-
grated interconnect model. The experiments are presented
in Section 6. In Section 7 we present a trace-based simu-
lation study to demonstrate the capability of our model for
incorporating realistic applications. A preliminary study on
the parallel performance of the interconnect model is pre-
sented in Section 8. Finally, we conclude the paper and
outline our future work in Section 9.

2. BACKGROUND AND RELATED WORK
There exist a wide selection of HPC simulators. Some

simulators, such as Gem5 [4], COTSon [3], and Simics [24],
model the full-system architecture. Some simulators focus
only on a specific component of the system, such as Cacti [41]
for caches, M5 [5] for networks, and Graphite [25] for mul-
ticore design. These simulators are not appropriate for the
performance prediction of large-scale HPC applications due
to their limitations in scalability and scope.

An important aspect in HPC performance prediction is
scalability. That is, how large the HPC system can one
model? For example, BigSim is an early effort for perfor-
mance prediction of large-scale parallel machines (in partic-
ular, Blue Gene/L machines), based on the actual execu-
tion of the real applications [35, 43]. It is implemented us-
ing Charm++ and MPI, and applies parallel discrete-event
simulation to scale up performance. BigSim adopts an opti-
mistic approach using the inherent determinacy of the target
parallel applications to reduce the overhead of the optimistic
scheme. Experiments show that BigSim is capable of scal-
ing up to 64K simulated processors. In the similar fashion,
µπ is an MPI simulator based on an efficient conservatively-
synchronized parallel simulator [32]. Experiments show that
the simulator is capable of simulating hundreds of millions
of MPI ranks on a Cray XTS with 216K cores. Compared
to our integrated interconnect model, however, both BigSim
and µπ provide a simpler network model [9, 43].

The Extreme-scale Simulator (xSim) is a performance-
prediction toolkit for future HPC architectures [6]. xSim
applies parallel discrete-event simulation using lightweight
threads to achieve scalability up to millions of application
processes [15, 16]. xSim also incorporates different network
topologies, including star, ring, tree, mesh, and torus [17].
However, unlike our interconnect model, network congestion
is omitted in xSim to gain scalability. As such, their simu-
lator cannot accurately model the blocking behavior of the
target interconnection network which may be of importance
to the architecture/application co-design.

The Structural Simulation Toolkit (SST) [34] is a compre-
hensive simulation framework for modeling large-scale HPC
systems, including processors, memory, network, and I/O
systems. It attempts to achieve scalability using a conserva-
tive parallel simulation approach. SST can model hardware
components with different granularity and accuracy. SST’s
network model in particular contains a variety of intercon-
nect topologies: binary tree, fat-tree, hypercube, butterfly,
mesh, and so on. The interconnect model, however, does
not provide the necessary details for capturing important
network behaviors for performance prediction. For exam-
ple, it does not support network flow control and also the
links are assumed to have infinite capacity. Our intercon-
nect model, on the contrary, provides packet-level details
that can support realistic network scenarios, such as the
transient network congestion occurred during the execution
of large complex applications.

Co-Design of Exascale Storage System (CODES) is a joint
project between the Argonne National Laboratory and Rens-
selaer Polytechnic Institute [12]. The simulator is built upon
the Rensselaer Optimistic Simulation System (ROSS), which
is based on reverse computation [8]. Several detailed in-
terconnect models have been implemented, which include
torus [22], dragonfly [26], and fat-tree [23]. For example,
in [27], the simulator predicts the performance of the torus

Large-Scale Scientific Applications (SNAP, TAD, MC, ..)

Message-Passing Interface (MPI)

Interconnect Models Node Models

Fat Tree Dragonfly Torus I/O and File
Systems

Memory
Cache Processor

Simian (Parallel Discrete-Event Simulation Engine)

Figure 1: An architectural design of PPT.

network with high-fidelity using synthetic traffic patterns
(such as diagonal pairing) on IBM’s Blue Gene/P system.
In [23], the simulator models large-scale fat-tree networks
consisting of millions of compute nodes in a time-efficient
manner. A recent paper has proposed a trace-driven simu-
lator (TraceR) to replay large execution traces to predict and
understand network performance and behavior [1]. TraceR
is built upon ROSS-based CODES simulator and has been
shown to be able to simulate a network consisting of half
million nodes using traces produced by running BigSim ap-
plications.

The CODES project aims at enabling co-design of exascale
storage systems. Although complementary to our approach
in examining the communication cost of parallel applications
(especially computation physics applications), CODES has
a slightly different focus on storage systems. Our project
aims at providing fast evaluation of computational physics
algorithms and methods on novel large-scale parallel archi-
tectures. We have adopted a minimalistic design to facil-
itate easy integration of the interconnect model with the
target applications (using interpreted languages, like Python
and Lua) and provide scalability to accommodate large-scale
parallel applications and high-performance architectures.

3. DESIGN OVERVIEW
To design an interconnect model for performance predic-

tion, one need to take several important factors into account:
• Scale: The interconnect model must be able to accom-

modate high-performance computing platforms and applica-
tions at extreme scale.
• Performance: The interconnect model must run reason-

ably fast so that it can be used to explore design alternatives
of system architectures, software, and parallel applications.
• Accuracy: The interconnect model must provide high

fidelity sufficient to represent the effect of important design
decisions, constraints and optimizations. Simple analytical
models may not be sufficient for projecting the performance
of dynamic, complex applications.
• Integration: The interconnect model must be easy to in-

tegrate with other models, including those for processors,
memory, and file systems. It is also important that the
model can be readily integrated with common software tools,
such as MPI, so that various scientific applications can be
easily incorporated in the performance study.

Fig. 1 presents an architectural design of our Performance
Prediction Toolkit. The majority of target large-scale scien-
tific applications use MPI. Consequently, we designed and
implemented an MPI model, which makes it easy for us to
incorporate various application models. An instance of the

MPI model can be instantiated at the simulated compute
nodes, connected via the interconnect model. There are dif-
ferent interconnection network topologies, such as fat-tree,
dragonfly, and torus. In this paper, we focus on the specific
interconnect model for torus.

All our models are developed based on Simian, which is an
open-source, process-oriented parallel discrete-event simula-
tion (PDES) engine [37]. Simian has two independent im-
plementations written in two interpreted languages, Python
and Lua, respectively. Simian uses a conservative barrier-
based synchronization algorithm [29] for parallel execution.

Simian has several distinct features. First, Simian adopts
a minimalistic design. For example, the Python implemen-
tation of Simian consists of only around 500 lines of code. As
a result, it requires low effort to understand the code and it
is thus easy for model development and debugging. Second,
Simian features a very simplistic application programming
interface (API). To maximize portability, Simian requires
minimal dependency on third-party libraries. Third, Simian
takes advantage of just-in-time (JIT) compilation for inter-
preted languages. For certain models, Simian has demon-
strated that it can even outperform the C/C++ based sim-
ulation engine.

To develop models on Simian, it is necessary to under-
stand the Simian API, which contains only three main mod-
ules: the simulation engine, entities, and processes. A simu-
lation engine is a logical process responsible for synchroniz-
ing with other logical processes. A simulation engine starts
with the run method, which continuously pops events with
the minimum timestamp from the event queue and invokes
the corresponding event handler functions. The logical pro-
cesses are synchronized using a simple window-based con-
servative synchronization mechanism. In particular, at the
start of each window (beginning at simulation time zero),
all logical processes find the timestamp of the event at the
head of the event queue, add a system-wide minimum delay
(lookahead), and then perform a min-reduction to determine
the start time of the next synchronization window.

Entities are containers for state (such as a network switch
or a compute node). Entities contain event handlers (called
services in Simian) that may change the state. An entity can
communicate with others by scheduling services at the other
entities. Important methods for the entity include: attach-
Service, reqService, createProcess, and startProcess.
The attachService method attaches an event-handler func-
tion to the entity, while the reqService method schedules an
event to be processed at a future simulation time. The meth-
ods createProcess and startProcess creates and starts a
process, respectively.

Processes are independent threads of execution. Each pro-
cess is associated with an entity. Simian uses lightweight
threads to implement the processes—greenlets in Python
and coroutines in Lua. The user can create a child pro-
cess using the the spawn method and terminates one using
the kill method. In addition, the user can put a process
to sleep for a certain amount of simulation time (using the
sleep method), suspend a process from execution (using the
hibernate method), and later resume its execution to con-
tinue from the previous suspension (using the wake method).

In this paper, we focus on the torus interconnect model.
In particular, we describe a model for the Cray’s Gemini
interconnect that has been commonly used by many super-
computing systems today. We also focus on an MPI model

Yarc-2
Router

Netlink Block

NIC 0 NIC 1Node 0 Node 1

X

Y

Z

Figure 2: Cray Gemini ASIC block diagram.

that integrates with the Gemini interconnect model, allow-
ing various scientific application models to be readily incor-
porated for performance evaluation and analysis.

4. GEMINI INTERCONNECT MODEL
We designed and implemented a relatively detailed model

for the Gemini interconnection network. Gemini is a part of
the Cray’s XE6 architecture. Cray XE6 is a system currently
used by many large-scale high-performance computing sys-
tems, including, for example, Hopper at National Energy
Research Scientific Computing Center (NERSC), Cielo at
Los Alamos National Laboratory (LANL), Blue Waters at
the National Center for Supercomputing (NCSA), Titan at
the Oak Ridge National Laboratory, and ISTeC at Colorado
State University.

Each Cray XE6 compute node has two AMD Opteron
processors, coupled with its own memory (either 32 GB or
64 GB) and communication interface. The Gemini network
was first introduced in 2010 in Cray XE6 systems and was
the most notable difference from the earlier Cray XT sys-
tems. In Gemini, the two AMD Opteron nodes are con-
nected to the Gemini Application-Specific Integrated Circuit
(ASIC) through two Network Interface Controllers (NICs).
The NICs have their own HyperTransport (HT) 3 link to
connect to the nodes, where the link offers up to 8 GB/s
bandwidth per node and direction [31]. The NICs within
an ASIC are connected through a Netlink block, enabling
internal communication between the NICs. At the heart of
Gemini is a 48-port YARC router (shown in Fig. 2), which
is configured to construct a 3D torus topology. The router
is connected to Netlink block through 8 links. Each router
gives ten torus connection: two connections per direction in
the “X” and “Z” dimension and one connection per direction
in the “Y” direction.

Unlike some other interconnection networks, such as fat-
tree, torus is a blocking network. It is possible that conges-
tion may happen in the network where queuing delays may
negatively affect the performance of parallel applications in
a significant fashion. It is thus important to model the traffic
behavior in the network imposed by high-level applications.
To do that, we need to provide a detailed queuing model to
capture the interactions of network transactions.

We implemented each compute node (which is also called
a host) or interconnect switch as a Simian entity. Fig. 3
shows a diagram of the design. The hosts and switches are
connected via network interfaces that simulate the queuing
behavior. A network interface may consists of multiple ports
to handle parallel connections between the switches (e.g., in
the “X” and “Z” dimensions). Each port consists of an out-
put port (“outport”) and an input port (“inport”) for sending
and receiving messages. To send data from the output port,
Simian schedules a service (i.e., an event handler), called

Outport

Inport

Outport

Inport

Outport

Inport

In
te
rfa
ce

Pa
ra

lle
l

In
pu

t P
or

ts
Pa

ra
lle

l
O

ut
pu

t P
or

ts

Simian Service
handle_packet_arrival()

Schedule service at other Simian entity
req.service(handle_packet_arrival)

+X

+Z

-Y

H
-Z

+Y

-X

Simian Process
routing_process()

R
Simian Process

receive_process()

Host
Simian Entity

Switch
Simian Entity

Figure 3: Interconnect model using Simian entities,
processes, and services.

handle_packet_arrival, at the next node (which can be
either a switch or a host), with a delay that is the sum of
the current queuing delay at the output port, the packet
transmission time, and the link propagation delay between
the two nodes. Upon a packet’s arrival at a switch, the
handle_packet_arrival service inserts the packet into the
buffer of the corresponding input port and informs the rout-
ing process. The routing process is a Simian process that
takes packets from the input ports, calculates the next hop
using the selected routing algorithm, and then forwards the
packet to the corresponding output port. If a host receives
the packet, the handle_packet_arrival service inserts the
packet into the input buffer of the host interface and in-
forms the receive process, which hands the packet to the
corresponding MPI receiver accordingly.

Gemini supports multiple routing algorithms, such as de-
terministic, hashed, and adaptive [40]. Each routing algo-
rithm follows dimension-order routing, where “X” dimension
is always traversed first, then “Y” dimension, and finally “Z”
dimension [30]. Different routing algorithms provide differ-
ent level of flexibility in using links at dimensions. For exam-
ple, the deterministic dimension-order routing provides least
amount of flexibility, where links are predetermined in each
dimension. The adaptive dimension-order routing provides
most flexibility, allowing packets to be adaptively scheduled
to lightly-loaded links. In our implementation, the user can
explicitly select the routing algorithm when configuring the
interconnect model.

5. THE MPI MODEL
The Message Passing Interface (MPI) is one of the most

popular parallel programming tools on today’s HPC plat-
forms. A good MPI model is essential to studying the design
and implementation of scientific applications.

The design of an MPI implementation is intricately influ-
enced by the underlying interconnection network. For exam-
ple, Cray’s MPI implementation for the Gemini interconnect
uses Fast Memory Access (FMA). It allows a maximum of 64
bytes of data transfer for each network transaction. A net-
work transaction initiates a single request from the source
to the destination, which triggers a response from the desti-
nation back to the source. A large message will get broken
down into many individual 64-byte transactions. There are
two types of transactions. A typical PUT transaction sends
64 bytes of data from a source to a destination. A PUT mes-
sage consists of a 32-phit request packet (i.e., 96 bytes, where

from ppt import *

config hopper (17x8x24 gemini interconnect)
model_cfg = { # a dictionary
"intercon_type" : "gemini",
"host_type" : "mpihost",
"torus" : configs.hopper_intercon,
"mpiopt" : configs.gemini_mpiopt,

}
model = HPCSim(model_cfg, ..)

mpi main function, n is matrix dimension
def cannon(mpi_comm_world, n):
... # we describe this later

start 16 mpi ranks, pass matrix dimension
model.start_mpi(range(16), cannon, 10000)

simulation starts
model.run()

Figure 4: An example showing running 16 MPI pro-
cesses on Hopper.

each phit is 24 bits). Each PUT message is followed by a 3-
phit response packet (9 bytes) from destination to source. A
typical GET transaction consists of a 8-phit request packet
(24 bytes), followed by a 27-phit response packet (81 bytes),
including 64 bytes of data.

To design an MPI model for Gemini, we need to incor-
porated the FMA request and response scheme at the level
of each network transaction. Cray’s MPI implementation
uses both PUT and GET protocols, the decision of which
to use depends on the data size [30]. It was observed that,
for data size up to 4K bytes and also beyond 256K bytes,
Cray’s MPI uses PUT. For data size between 4K and 256K
bytes, MPI chooses GET. In our implementation, we only
use PUT for simplicity. Since both PUT and GET transac-
tions have a total of 105 bytes of traffic for each request and
response pair between the source and the destination, we
expect that the effect of selecting between PUT and GET,
both in terms of network latency and bandwidth, would be
rather insignificant.

In our model, upon receiving a send request of a large MPI
message, the MPI sender needs to break down the message
into individual PUT requests of at most 64 bytes each. Each
message will be sent over the network with an extra 32-byte
message overhead. Upon receiving the PUT request, the
MPI receiver responses with a 9-byte ACK. We implemented
a message retransmission mechanism to ensure reliable data
delivery of the MPI messages.

To easily incorporate scientific applications that use MPI,
we take advantage of Simian’s process oriented design. As
we mentioned earlier, each compute node (host) is by it-
self a Simian entity. Different compute nodes communi-
cate by sending and receiving events (via scheduling services
in Simian). We implemented each user MPI process as a
Simian process on the compute node. This allows each user
MPI process to run independently from other MPI ranks as
well as other system-level simulation processes.

Fig. 4 provides an example showing how to start the MPI
processes on a simulated HPC cluster. The program starts
by calling HPCSim to instantiate the model for the entire
cluster, including the interconnect model and the compute
nodes. Model parameters are passed as an argument in the

cannon’s algorithm on matrix multiplication
def cannon(mpi_comm_world, n):
p = mpi_comm_size(mpi_comm_world)
id = mpi_comm_rank(mpi_comm_world)
use p, id to calc i, j, and neighbor ranks

time for reading/initing submatrics
sleep(sometime) # proportional to m^2

shift A(i,j) left by i columns
mpi_sendrecv(left_i, None, m*m*8,

right_i, mpi_comm_world)
shift B(i,j) up by j rows
mpi_sendrecv(up_j, None, m*m*8,

down_j, mpi_comm_world)

for r in range(sqrt(p)-1):
time for multiplying A(i,j) and B(i,j)
sleep(sometime) # proportional to m^3

shift A(i,j) to the left
mpi_sendrecv(left, None, m*m*8,

right, mpi_comm_world)
shift B(i,j) upward
mpi_sendrecv(up, None, m*m*8,

down, mpi_comm_world)

mpi_finalize(mpi_comm_world)

Figure 5: Simulating Cannon’s matrix multiplica-
tion.

form of a python dictionary. Most common hardware config-
urations are preset in PPT for easy reuse and customization,
including those parameters that are needed by the MPI im-
plementation for specific interconnection networks.

The start_mpi function creates the MPI processes on the
designated compute nodes. To allow maximum flexibility,
we require the users to specify a mapping from the MPI
ranks to the host IDs. The first argument to start_mpi is a
list. In the example, the simulator creates 16 MPI processes
and maps them to 16 compute nodes. On the other hand,
if a compute node contains multiple cores (say, 4), one may
want to allocate as many MPI ranks to the compute node.
This can be easily achieved by specifying a list in python,
like: [i/4 for i in range(n)].

Each MPI process is simply a python function that takes
at least one argument: mpi_comm_world. Like in a real MPI
implementation, it is an opaque data structure that repre-
sents the set of MPI processes among which communication
may take place. Our design, to a large extent, resembles
the MPI API. To illustrate its use, we use a simple exam-
ple of Cannon’s matrix multiplication algorithm [7]. The
algorithm applies a 2-D block decomposition of the matri-
ces. Suppose the dimension of the matrices is n × n, each
processor would be in charge of calculating a sub-matrix of
size m×m, where m = n/

√
p, and p is the total number of

MPI ranks (assuming it is a square number).
Fig. 5 shows a simulation of the Cannon’s algorithm. As

we see, the program captures the main execution skeleton
of the algorithm. The timing calculation for loading and
initializing the sub-matrices and for multiplying the sub-
matrices depends on the processor, cache/memory, and file
system models that we ignore here. The MPI calls are
mapped to the real MPI functions. We implemented most
common MPI functions. Table 1 summarizes the main func-

Table 1: Implemented MPI Functions
MPI_Send blocking send (until message delivered to destination)

MPI_Recv blocking receive

MPI_Sendrecv send and receive messages at the same time

MPI_Isend non-blocking send, return a request handle

MPI_Irecv non-blocking receive, return a request handle

MPI_Wait wait until given non-blocking operation has completed

MPI_Waitall wait for a set of non-blocking operations

MPI_Reduce reduce values from all processes, root has final result

MPI_Allreduce reduce values from all, everyone has final result

MPI_Bcast broadcast a message from root to all processes

MPI_Barrier block until all processes have called this function

MPI_Gather gather values form all processes at root

MPI_Allgather gather values from all processes and give to everyone

MPI_Scatter send individual messages from root to all processes

MPI_Alltoall send individual messages from all to all processes

MPI_Alltoallv same as above, but each can send different amount

MPI_Comm_split create sub-communicators

MPI_Comm_dup duplicate an existing communicator

MPI_Comm_free deallocate a communicator

MPI_Comm_group return group associated with communicator

MPI_Group_size return group size

MPI_Group_rank return process rank in group

MPI_Group_incl create new group including all listed

MPI_Group_excl create new group excluding all listed

MPI_Group_free reclaim the group

MPI_Cart_create add cartesian coordinates to communicator

MPI_Cart_coords return cartesian coordinates of given rank

MPI_Cart_rank return rank of given cartesian coordinates

MPI_Cart_shift return shifted source and destination ranks

tions included in our MPI model, including blocking and
non-blocking point-to-point communications, most collec-
tive operations, groups and sub-communicators.

6. VALIDATION EXPERIMENTS
In this section, we describe the experiments for validating

our interconnect model. We measure the model-predicted
MPI performance on Cray’s Gemini network and compare
that with published results in the literature to validate our
interconnect model.

We consider a large-scale interconnect system in real de-
ployment. Hopper was built by National Energy Research
Scientific Computing Center/NERSC (a high-performance
computing facility of the U.S. Department of Energy (DOE)
[42]). It is a Cray XE6 system that consists of 6, 384 com-
pute nodes connected via the Gemini interconnect1. Each
compute node contains two 12-core AMD Magny Cours pro-
cessors running at 2.1 GHz, and DDR3 1.3 GHz RAM (32
GB for each of the 6, 000 nodes and 64 GB for each of the rest
384 nodes). The entire system contains a total of 153, 216
cores, 212 terabytes of memory, and 2 petabytes of disk. The
peak floating point operations per node is 201.6 Gflops. The
peak performance of the system has been demonstrated to
reach 1.3 petaflops [20].

As mentioned earlier, Cray’s Gemini interconnect is a
3-D torus interconnect of high performance [2]. Dimen-
sions of Hopper’s torus network are 17 × 8 × 24. As out-
lined in the original design and considered in various litera-
ture [19], the peak link speed across the X and Z dimensions
is 9.375 GB/sec and in the Y dimension is 4.68 GB/sec.
Inter-node latency is measured about 1.27 µs between the

1Cray XE6 has been used by many of the largest supercom-
puting systems over the last decade [19].

End−to−End Delay (in nanoseconds)

1500 2000 2500 3000 3500 4000

13
36

206

448

320

828

1016

1070

508

882

640

224
260

72

4

Figure 6: A histogram of end-to-end delay between
compute nodes of the simulated HPC cluster.

0.0*100

5.0*104

1.0*105

1.5*10
5

2.0*105

2.5*105

3.0*10
5

3.5*105

 16 64 256 1K 4K 16K 64K

Number of Ranks

64 bytes
256 bytes
1K bytes
4K bytes
16K bytes

Figure 7: Duration of the MPI_Allreduce call for dif-
ferent number of ranks and data size on the simu-
lated HPC cluster.

nearest nodes and 3.88 µs between the farthest nodes across
the system. Although topologically it is a regular 3-D torus,
Hopper’s interconnect is wired specifically to optimize for
the application performance, in which case the hosts are
not necessarily named consecutively. To account for that
in our model, we provide a mapping from the host IDs to
the 3-D torus coordinates of the corresponding interconnect
switches [28]. Using this one-to-one mapping, we design the
hopper interconnect to closely represent the communication
behavior of the applications running on the compute nodes.

The end-to-end latency between two end nodes is deter-
mined by the link (propagation) delay and the number of
hops between the nodes. For Hopper, the inter-node latency
has been reported to be 1.27 µs between the nearest nodes.
Consequently, we configure the link delay between the com-
pute nodes and the corresponding switch in our model to
be half of that, which is 635 nanoseconds. The inter-node
latency for the farthest nodes on Hopper is measured to be
3.88 µs. Since the network diameter for a 17× 8× 24 torus
is 24, we can subtract two node-switch link delays from the
inter-node latency and divide the results by the network di-
ameter. In this way, we obtain the link delay between the
adjacent torus switches to be 108.75 nanoseconds. The re-
sult per-hop latency seems to be consistent with the empir-
ical measurement reported in the original design paper [2].

 0

 1

 2

 3

 4

 5

 6

 7

 8 32 128 512 2K 8K 32K 128K

T
h
ro

u
g
h
p
u
t
(G

b
y
te

s
/s

e
c
)

Data Size (bytes)

MPI Throughput (Simulation Results)

nearest pair, PPN=4
nearest pair, PPN=2
nearest pair, PPN=1
farthest pair, PPN=4
farthest pair, PPN=2
farthest pair, PPN=1

Figure 8: MPI throughput from simulation as a
function of message size for 1, 2 and 4 MPI pro-
cesses per node.

We did a latency test by having an MPI process to send a
4-byte data to all other MPI processes mapped on different
compute nodes and measure the end-to-end delay. Fig. 6
shows the histogram of the end-to-end delay. The delays
are measured between 1.27 µs and 4.07 µs, which are con-
sidered within expectation. We also conducted a latency
measurement for MPI collective operations. In particular,
we measured the duration of a call to MPI_Allreduce, as we
vary the number of MPI ranks and the data size. Fig. 7
shows the results. As expected, the collective operation has
a logarithmic cost in the number of processes under the nor-
mal situation. When the number of processes increases along
with the data size, part of the network becomes congested
and the delay increase superlinearly.

To measure the MPI throughput, we select two compute
nodes to run multiple MPI processes; we designate one com-
pute node to run only the MPI senders and the other only
the MPI receivers. We vary the number of the sender and
receiver pairs (i.e., the number of processes per node, PPN)
to be 1, 2 and 4. Each MPI sender sends a series of MPI
messages of a given fixed size back-to-back, using MPI_Send

call, to the designated MPI receiver on the other host. The
MPI receiver simply loops and calls the MPI_Recv. We run
different experiments varying the size of the MPI messages
from 8 bytes to 128K bytes doubling each time between the
experiments. To get reasonable bounds of the throughput,
we select two extremes: one with the two compute nodes
next to each other, and the other with the two nodes far-
thest apart over the interconnect network.

Fig. 8 shows the aggregate throughput of all MPI senders
as a function of MPI message size. The performance lev-
els off at 6.75 GB/s when the traffic becomes largely band-
width constrained. As expected, multiplexing MPI sends
at the source host achieves proportionally higher aggregate
throughput for small data sizes when the total is less than
the bandwidth cap. The throughput between the farthest
nodes is lower than that between the nearest nodes due to
the increased end-to-end latency.

In Gemini, Fast Memory Access (FMA) is a mechanism
for user processes to generate network transactions. In our
model, we implemented MPI only as FMA put, where the
source can write up to 64 bytes at a time. In Fig. 9, we re-
produce the Gemini FMA put throughput (solid lines) as a
function of transfer size for 1, 2 and 4 processes per node (as

 0

 1

 2

 3

 4

 5

 6

 7

 8 32 128 512 2K 8K 32K

T
h
ro

u
g
h
p
u
t
(G

b
y
te

s
/s

e
c
)

Data Size (bytes)

FMA Put Throughput (Empirical vs. Simulation)

empirical, PPN=4
empirical, PPN=2
empirical, PPN=1
simulation, PPN=4
simulation, PPN=2
simulation, PPN=1

Figure 9: Gemini FMA put throughput (as reported
in [2]) versus simulated throughput as a function of
transfer size for 1, 2, and 4 processes per node.

published in [2]). We noticed that the FMA put through-
put is significantly higher than what we have achieved us-
ing MPI, especially at small transfer sizes, although both
level off at above 6 MB/s for large transfer sizes. We spec-
ulated that this is due to the MPI overhead. On a quiet
network, remote put has an end-to-end latency of less than
700 nanoseconds. But with MPI, the end-to-end latency
increases to 3.88 µs between the farthest nodes. To verify
that this is indeed the cause of the lowered throughput of our
MPI performance, we artificially reconfigured the link delay
so that the end-to-end delay for MPI becomes 700 nanosec-
onds. The results are shown in Fig. 9 (dashed lines), which
clearly indicates a much closer match of the simulated re-
sults with the empirical measurements.

7. TRACE-DRIVEN MPI SIMULATION
In this section, we present a trace-based simulation study

to demonstrate the capability of our interconnect model
of incorporating realistic application behaviors, and further
validate our model by comparing the communication cost
predicted by our model against the actual performance of
running the scientific applications on target HPC platforms.

In this study, we use real application communication traces
provided by the National Energy Research Scientific Com-
puting Center (NERSC). These traces are used for char-
acterizing the demand of various DOE (US Department of
Energy) mini-apps run at various large-scale computing fa-
cilities [13]. The traces contain single-node execution pro-
files of the mini-apps, which include the execution time, the
execution speed (the number of instructions per second),
the workload (the number of floating-point operations), as
well as other cache/memory performance metrics, such as
cache miss ratios at different levels. The traces also pro-
vide parallel speedup performance and MPI communication
operations. The latter is of particular interest in our study.

The DOE mini-apps in the trace collection were run at
DOE’s three co-design centers, each covering two main appli-
cations. ExMatEx (Extreme Materials at Extreme Scale) [14]
contains the traces of the Neutron Transport Evaluation
and Test Suite (HILO) and the Livermore Unstructured
Lagrangian Explicit Shock Hydrodynamics (LULESH). CE-
SAR (Center for Exascale Simulation of Advanced Reac-
tors) [10] contains the traces for the MOC emulator and

0.409470006 0.410042020 MPI_Isend 2601 MPI_DOUBLE 16 9

Start time End time MPI call Data type

Count Destination
rank

Request ID

0.890784086 0.891833593 MPI_Waitall 15 13 12 11 10 9 16

Start time End time MPI call Request IDs

Figure 10: Format of MPI calls in the processed
trace file (there is one trace file for each MPI rank).

Nekbone, which solves a poison equation using conjugate
gradient iteration with no preconditioner on a block or lin-
ear geometry. ExaCT (Exascale Simulation of Combustion
in Turbulence) [11] contains traces for a multigrid solver and
CNS, a stencil-based algorithm for computing the Compress-
ible Navier-Stokes equations.

The MPI traces was performed on Hopper (described ear-
lier) using the open-source DUMPI toolkit [36] for different
number of cores (e.g., 64, 256, and 1024 cores). For each
run of the given application, there are a set of trace files,
one for each MPI rank. The original trace files are in a
binary format. We converted the binary files to text files,
using the SST DUMPI toolkit [36] and then processed the
files to assemble the necessary information of each MPI call
in order, which includes the measured start and end time
of the MPI call, and the specific parameters associated with
the call, such as the source or destination rank, data size,
etc. As an example, Fig. 10 shows two entries of a processed
trace file, one for MPI_Isend and the other for MPI_Waitall.
Note that, since the conversion from DUMPI traces to text
format is done during pre-processing, this step does not con-
tribute to the simulation runtime. An alternative solution is
to parse the binary information directly. We did not choose
this option as it depends on the knowledge of DUMPI’s in-
ternal trace file format.
MPI_Isend is a non-blocking send; the function is expected

to return immediately with a request handle, which the user
can later use to query or wait for the completion of the
corresponding non-blocking MPI operation. An entry asso-
ciated with the MPI_Isend call includes the start time and
the end time of the MPI call. The count indicates the num-
ber of data elements to be sent. Using the count and the
data type, one can easily determine the true size of the MPI
message. In the example, 2, 601 elements of the MPI_DOUBLE

type (8 bytes each) would give 20, 808 bytes of data which is
scheduled to be transferred for this MPI non-blocking call.
The entry also provides the destination MPI rank and an ID
to represent the request handle returned by the MPI call.
MPI_Wallall waits for a list of MPI requests to complete.
Accordingly the corresponding entry in the trace provides a
list of the request IDs. The MPI function will not return
until all corresponding non-blocking operations (which may
include both MPI_Isend and MPI_Irecv calls) are completed.

To run the trace, we start the simulation with the same
number of simulated MPI ranks. At each MPI rank, we read
the corresponding processed trace file for the rank, one entry
at a time. For each entry, we first advance the simulation

0.0*10
0

5.0*10
7

1.0*10
8

1.5*10
8

2.0*10
8

2.5*10
8

3.0*10
8

 0 2 4 6 8 10

D
u
ra

ti
o
n
 o

f
M

P
I
C

a
ll

(n
a
n
o
s
e
c
o
n
d
s
)

Time (seconds)

Trace Data

0.0*10
0

5.0*10
7

1.0*10
8

1.5*10
8

2.0*10
8

2.5*10
8

3.0*10
8

 0 2 4 6 8 10
D

u
ra

ti
o
n
 o

f
M

P
I
C

a
ll

(n
a
n
o
s
e
c
o
n
d
s
)

Time (seconds)

Simulation (without Time Shift)

0.0*10
0

5.0*10
7

1.0*10
8

1.5*10
8

2.0*10
8

2.5*10
8

3.0*10
8

 0 2 4 6 8 10

D
u
ra

ti
o
n
 o

f
M

P
I
C

a
ll

(n
a
n
o
s
e
c
o
n
d
s
)

Time (seconds)

Simulation (with Time Shift)

Figure 11: Comparing the duration of MPI calls
between trace and simulation with and without time
shift.

clock to the exact start time of the MPI call shown in the
trace, by having the simulation process to sleep for the exact
amount time equal to the difference between the MPI start
time and current simulation clock. We then call the same
MPI routine in our model and measure the time it takes to
complete the MPI call in simulation. We record the time
and later compare it against the end time of the MPI call in
the trace.

Fig. 11 shows the results of our trace-driven simulation
for LULESH from ExMatEx running on 64 MPI processes.
Our method can be generally applied to all other traces.
LULESH is a mini-app that approximates a typical hydro-
dynamics model and solves Sedov blast wave problem in
3-D [21]. It is a widely-studied proxy application, which can
efficiently run on various platforms and has been ported to a

number of programming models (including MPI, OpenMPI,
Chapel, and Charm++) [18]. The particular trace runs for
approximately 55 seconds. There are a total of 123, 336
calls to MPI_Isend and the same number for MPI_Irecv and
MPI_Wait. There are 12, 864 calls to MPI_Waitall, 6, 336
calls to MPI_Allreduce, 64 calls each to MPI_Barrier and
MPI_Reduce.

The top plot of Fig. 11 shows the duration of MPI calls
observed from the trace (by subtracting the start time from
the end time). For easy exposition, we show only the first
10 seconds of the experiment (later time exhibits similar
behavior). The middle plot Fig. 11 shows the trace-driven
simulation result. At first glance, the simulation shows very
similar pattern, yet the duration of the MPI calls spreads
as much as three times of the empirical results. A closer
inspection shows that the simulation clock sometimes may
go beyond the start time of the MPI calls in trace. This is
possible since the simulated process may take longer time to
complete the previous MPI operation.

To eliminate this bias for comparing the duration of the
MPI calls between the simulation and the empirical mea-
surements, we introduce time shift for the trace. When the
simulation process detects that its clock goes beyond the
time of the trace, we shift the start time of all subsequent
MPI calls in the trace by the difference so that the delay of
the previous MPI calls in the simulation will not affect the
subsequent calculations of the duration of the MPI calls.

The bottom plot of Fig. 11 shows the result of simula-
tion with this time shift. We observe that the duration of
the MPI calls becomes much lower. The outstanding spikes
(up to around 100 milliseconds) are from MPI_Waitall. The
staggering pattern seems to be related to the skew in the
wall-clock time of the participating compute nodes in the
original trace. This would explain the spread of the dura-
tions of the MPI calls observed in the original trace (in the
top plot).

8. PARALLEL PERFORMANCE
To assess the parallel performance of our integrated model,

we conducted a set of experiments on a 1, 500-node com-
pute cluster located at Los Alamos National Laboratory.
Each compute node in the cluster is equipped with a 12-
core Opteron 6176 12C 2.3GHz CPU. The compute nodes
are connected by an Infiniband QDR interconnect.

To obtain strong-scaling results, we simulated 156,672 MPI
processes running on the Hopper. That is, there is one MPI
process running at each core of the target supercomputer
platform. For the experiment, the MPI processes perform
a collective operation, using MPI_Allreduce, with different
data size (1K or 4K bytes).

Fig. 12 shows the performance results. We ran the model
varying the number of compute nodes, from 1 (12 cores)
to 256 nodes (that’s 3,072 cores). For data size of 4KB,
we ran the model with at least 48 cores to save compute
time. The results demonstrate decent parallel performance
of the simulator as we see the run time steadily decreases as
we increase parallelism. However, the cost of using Simian’s
Python implementation is also obvious. The aggregate event
rate is low, even for 3,072 cores. For this experiment, we did
not use Python just-in-time (JIT) compilation, which is ex-
pected to significantly improve the performance. We are
in the process of translating our model to Lua, for which
Simian has demonstrated superior performance. Using JIT

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 12 48 192 768 3072
0.0*100

2.0*105

4.0*105

6.0*10
5

8.0*105

1.0*106

1.2*10
6

1.4*106

Number of Cores

1KB, run time
4KB, run time
1KB, evt rate
4KB, evt rate

Figure 12: Observed run time and event rate for
running Simian with an 156K-rank MPI model on a
parallel compute cluster.

and with sufficient event granularity, Simian has been shown
to achieve as much as three times the event rate of an opti-
mized C++ parallel simulator [37].

9. CONCLUSIONS
In this paper, we presented an integrated HPC intercon-

nect model for performance prediction. Performance pre-
diction for large-scale scientific applications require an ac-
curate representation of the communication cost between
an extremely large number of compute nodes. Our inter-
connect model is fully integrated with an MPI implementa-
tion that includes all common point-to-point communication
functions and collective operations with packet-level accu-
racy. We conducted extensive validation study of our inte-
grated model, including a trace-driven simulation of real-life
scientific application communication patterns. Results show
that our model provides reasonably good accuracy.

For future work, we plan to include more interconnect
topologies and integrate the interconnect model with de-
tailed system models, including processors, cache, memory,
and file systems. We plan to incorporate target scientific ap-
plications and perform scalability studies using large-scale
application communication patterns (e.g., using those in-
cluded on the DOE website [13]). We are currently in the
process of translating our interconnect model to Simian Lua.
By then, we will be able to study the parallel performance
of our integrated models on large-scale HPC platforms.

Acknowledgments
We gratefully acknowledge the support of the U.S. Depart-
ment of Energy through the LANL/LDRD Program for this
work. We would also like to thank the anonymous reviewers
for their constructive comments and suggestions.

10. REFERENCES
[1] B. Acun, N. Jain, A. Bhatele, M. Mubarak, C. D.

Carothers, and L. V. Kale. Preliminary evaluation of a
parallel trace replay tool for HPC network
simulations. In Euro-Par 2015: Parallel Processing
Workshops, pages 417–429. Springer, 2015.

[2] R. Alverson, D. Roweth, and L. Kaplan. The Gemini
system interconnect. In 2010 18th IEEE Symposium
on High Performance Interconnects, pages 83–87.
IEEE, 2010.

[3] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero,
and D. Ortega. COTSon: infrastructure for full
system simulation. ACM SIGOPS Operating Systems
Review, 43(1):52–61, 2009.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti, et al. The gem5 simulator.
ACM SIGARCH Computer Architecture News,
39(2):1–7, 2011.

[5] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt. The M5 simulator:
Modeling networked systems. IEEE Micro, (4):52–60,
2006.

[6] S. Böhm and C. Engelmann. xSim: The extreme-scale
simulator. In High Performance Computing and
Simulation (HPCS), 2011 International Conference
on, pages 280–286. IEEE, 2011.

[7] L. E. Cannon. A Cellular Computer to Implement the
Kalman Filter Algorithm. PhD thesis, Montana State
University, Bozeman, MT, 1969.

[8] C. D. Carothers, D. Bauer, and S. Pearce. ROSS: A
high-performance, low-memory, modular Time Warp
system. Journal of Parallel and Distributed
Computing, 62(11):1648–1669, 2002.

[9] H. Casanova, A. Giersch, A. Legrand, M. Quinson,
and F. Suter. Versatile, scalable, and accurate
simulation of distributed applications and platforms.
Journal of Parallel and Distributed Computing,
74(10):2899–2917, 2014.

[10] Center for Exascale Simulation of Advanced Reactors
(CESAR). https://cesar.mcs.anl.gov/.

[11] Center for Exascale Simulation of Combustion in
Turbulence (ExaCT). http://exactcodesign.org/.

[12] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, and
R. Ross. CODES: Enabling co-design of multilayer
exascale storage architectures. In Proceedings of the
Workshop on Emerging Supercomputing Technologies,
pages 303–312, 2011.

[13] Department of Energy. Design forward
characterization of DOE mini-apps. http:
//portal.nersc.gov/project/CAL/doe-miniapps.htm,
Accessed December 1, 2015.

[14] DoE Exascale Co-Design Center for Materials in
Extreme Environments (ExMatEx). ExMatEx:
Extreme Materials at Extreme Scale.
http://www.exmatex.org/.

[15] C. Engelmann. Scaling to a million cores and beyond:
Using light-weight simulation to understand the
challenges ahead on the road to exascale. Future
Generation Computer Systems, 30:59–65, 2014.

[16] C. Engelmann and F. Lauer. Facilitating co-design for
extreme-scale systems through lightweight simulation.
In Cluster Computing Workshops and Posters
(CLUSTER WORKSHOPS), 2010 IEEE
International Conference on, pages 1–8. IEEE, 2010.

[17] I. S. Jones and C. Engelmann. Simulation of
large-scale HPC architectures. In Parallel Processing
Workshops (ICPPW), 2011 40th International
Conference on, pages 447–456. IEEE, 2011.

[18] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain,
J. Cohen, Z. DeVito, R. Haque, D. Laney, E. Luke,
F. Wang, et al. Exploring traditional and emerging

parallel programming models using a proxy
application. In Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium
on, pages 919–932. IEEE, 2013.

[19] D. J. Kerbyson, K. J. Barker, A. Vishnu, and
A. Hoisie. A performance comparison of current HPC
systems: Blue Gene/Q, Cray XE6 and InfiniBand
systems. Future Generation Computer Systems,
30:291–304, 2014.

[20] V. Kindratenko and P. Trancoso. Trends in
high-performance computing. Computing in Science &
Engineering, 13(3):92–95, 2011.

[21] Lawrence Livermore National Laboratory. Livermore
unstructured lagrangian explicit shock hydrodynamics
(lulesh). https://codesign.llnl.gov/lulesh.php.

[22] N. Liu and C. D. Carothers. Modeling billion-node
torus networks using massively parallel discrete-event
simulation. In Proceedings of the 2011 IEEE
Workshop on Principles of Advanced and Distributed
Simulation, pages 1–8. IEEE Computer Society, 2011.

[23] N. Liu, A. Haider, X.-H. Sun, and D. Jin. FatTreeSim:
Modeling large-scale fat-tree networks for HPC
systems and data centers using parallel and discrete
event simulation. In Proceedings of the 3rd ACM
Conference on SIGSIM-Principles of Advanced
Discrete Simulation, pages 199–210. ACM, 2015.

[24] P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50–58, 2002.

[25] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald III,
N. Beckmann, C. Celio, J. Eastep, and A. Agarwal.
Graphite: A distributed parallel simulator for
multicores. In High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International
Symposium on, pages 1–12. IEEE, 2010.

[26] M. Mubarak, C. D. Carothers, R. Ross, and P. Carns.
Modeling a million-node dragonfly network using
massively parallel discrete-event simulation. In High
Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion:, pages 366–376.
IEEE, 2012.

[27] M. Mubarak, C. D. Carothers, R. B. Ross, and
P. Carns. A case study in using massively parallel
simulation for extreme-scale torus network codesign.
In Proceedings of the 2nd ACM SIGSIM/PADS
conference on Principles of advanced discrete
simulation, pages 27–38. ACM, 2014.

[28] National Energy Research Scientific Computing
Center (NERSC). Hopper system. http://www.nersc.
gov/users/computational-systems/hopper/.

[29] D. M. Nicol. The cost of conservative synchronization
in parallel discrete event simulations. Journal of the
ACM, 40(2):304–333, April 1993.

[30] K. Pedretti, C. Vaughan, R. Barrett, K. Devine, and
K. S. Hemmert. Using the Cray Gemini performance
counters. Proc Cray User Group (CUG), 2013.

[31] A. J. Peña, R. G. C. Carvalho, J. Dinan, P. Balaji,
R. Thakur, and W. Gropp. Analysis of
topology-dependent MPI performance on Gemini
networks. In Proceedings of the 20th European MPI
Users’ Group Meeting, pages 61–66. ACM, 2013.

[32] K. S. Perumalla. µπ: a scalable and transparent
system for simulating MPI programs. In Proceedings
of the 3rd International ICST Conference on
Simulation Tools and Techniques, page 62. ICST
(Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2010.

[33] K. S. Perumalla and A. J. Park. Simulating
billion-task parallel programs. In Performance
Evaluation of Computer and Telecommunication
Systems (SPECTS 2014), International Symposium
on, pages 585–592. IEEE, 2014.

[34] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett,
C. Kersey, R. Oldfield, M. Weston, R. Risen, J. Cook,
P. Rosenfeld, E. CooperBalls, et al. The structural
simulation toolkit. ACM SIGMETRICS Performance
Evaluation Review, 38(4):37–42, 2011.

[35] N. Saboo, A. K. Singla, J. M. Unger, and L. V. Kalé.
Emulating petaflops machines and Blue Gene. In
Proceedings of the 15th International Parallel &Amp;
Distributed Processing Symposium, IPDPS ’01, pages
195–, Washington, DC, USA, 2001. IEEE Computer
Society.

[36] Sandia National Laboratories. Dumpi: The mpi trace
library. http://sst.sandia.gov/about\ dumpi.html.

[37] N. Santhi, S. Eidenzenz, and J. Liu. The Simian
concept: parallel discrete event simulation with
interpreted languages. In L. Yilmaz, W. K. V. Chan,
I. Moon, T. M. K. Roeder, C. Macal, and M. D.
Rossetti, editors, Proceedings of the 2015 Winter
Simulation Conference, 2015.

[38] US Department of Energy. Department of Energy
Awards $425 Million in Next Generation
Supercomputing Technologies. http:
//energy.gov/articles/department-energy-awards-425-
million-next-generation-supercomputing-technologies,
2014.

[39] B. Van Straalen and P. Collela. Resiliency and
codesign. In DOE Exascale Research Conference, 2012.

[40] A. Vishnu, J. Daily, and B. Palmer. Designing scalable
PGAS communication subsystems on Cray Gemini
interconnect. In High Performance Computing
(HiPC), 2012 19th International Conference on, pages
1–10. IEEE, 2012.

[41] S. J. Wilton and N. P. Jouppi. CACTI: An enhanced
cache access and cycle time model. Solid-State
Circuits, IEEE Journal of, 31(5):677–688, 1996.

[42] N. Wright, H. Shan, F. Blagojevic, H. Wasserman,
T. Drummond, J. Shalf, K. Fuerlinger, K. Yelick,
S. Ethier, M. Wagner, et al. The NERSC-Cray center
of excellence: Performance optimization for the
multicore era. CUG Proceedings, 2011.

[43] G. Zheng, G. Kakulapati, and L. V. Kalé. Bigsim: A
parallel simulator for performance prediction of
extremely large parallel machines. In Parallel and
Distributed Processing Symposium, 2004. Proceedings.
18th International, page 78. IEEE, 2004.

