
Toward Integrated Multi-Resolution HPC Modeling
for Rapid Performance Prediction (An Abstract)

Jason Liu
Florida International University

Stephan Eidenbenz
Los Alamos National Laboratory

High-performance computing architectures are changing
constantly. Since the de facto death of Amdahl’s Law (circa
2005), the field nevertheless has seen tremendous growth
thanks to innovations, such as multi-core/many-core proces-
sors, specialized co-processing units (like GPU), and advanced
memory/caching strategies. The constant flux in HPC archi-
tectures induces frequent changes to parallel applications.

To maintain the core capability in advanced computational
physics, DOE has devoted significant resources in adapting
its software to incorporate new system features for superior
performance—it is said: “no code shall be left behind.”
Code adaptation, however, can be difficult as it may involve
intricate changes to algorithms, and require new code analyses,
programming structures, data layouts, and parallel strategies.
The task usually requires good insight to sophisticated code
from highly skilled software architects and domain scientists.

Modeling and simulation plays a significant role, in iden-
tifying potential performance issues, evaluating design alter-
natives, performing parameter tuning, and answering what-if
questions. A large body of literature exists in HPC modeling
and simulation, ranging from coarse-level full-scale models,
to cycle-accurate simulations of individual components (pro-
cessors, cache/memory, and interconnect), to analytical ap-
proaches. We note that none of the existing methods is capable
of modeling full-scale HPC architectures and applications at
finest granularity. It is both unrealistic and unnecessary.

Today’s supercomputers are rapidly approaching exascale.
That is, the processing speed gets to 1018 floating-point
operations per second. We study the performance of parallel
applications (in particular, computational physics code) on
existing and future HPC systems. A cycle-accurate simulation
may render good fidelity for a specific component (say, a
multi-core processor) at a small time scale. Such models
cannot be extended to deal with arbitrarily large systems or
long time durations. Partially, this is due to the computational
complexity of such models (spatial and temporal).

More importantly, no model would be able to capture entire
system dynamics in detail. HPC applications written in specific
programming languages interact with other software modules,
libraries and operating systems, which in turn interact with
underlying resources for processing, data access, and I/O.
Any uncertainties involved with the aforementioned hardware
and software components (e.g., compiler-specific libraries) can
introduce modeling errors, far exceeding the fidelity achieved
by cycle-accurate models for a specific component.

George Box, the statistician, once said: “All models are
wrong but some are useful.” In order to scale up to a full-

system simulation, modelers are forced to raise the level of
modeling abstractions (by reducing modelings details). It is
true that, by choosing the “appropriate” modeling abstractions,
we can draw useful conclusions by extrapolating results from
high-level models. However, choosing appropriate modeling
abstractions depends not only on the goal of the study, but
also on how the components interact with one another.

We introduce “selective refinement codesign modeling”. For
codesign modeling, we start with both architecture and appli-
cation models, possibly with various modeling abstractions.
We want to find proper models for various components of
the system, enough to answer the research questions. This
would be an iterative process, based on the ability to locate
performance bottlenecks in both hardware and software. A
high-level process is as follows:

1) Start with coarse-level models
2) Run experiment and gather results
3) Identify potential performance bottlenecks
4) Replace components with more refined models
5) Go to step 2 until satisfied
We set out to design and develop a simulator, particularly

for rapid assessment and performance prediction of large-scale
scientific applications on current and future HPC architectures.
There are four requirements. First, the simulator needs to
easily integrate large-scale applications (computational physics
code) and full-scale architecture models (processors, mem-
ory/cache, interconnect, etc.). Second, the simulator needs
to combine selected models at different level of modeling
abstractions. Third, the simulator needs to have a short devel-
opment cycle, so that it can keep up with the fast refresh rate
of HPC systems. Last, the simulator must be high performance
and capable of handling extremely large models.

Our project “Scalable Codesign Performance Prediction for
Computational Physics” at LANL aims to establish rapid as-
sessment and performance prediction capabilities using the se-
lective refinement codesign modeling method. So far, we have
developed a minimalistic process-oriented parallel discrete-
event simulator based on just-in-time compilation. The sim-
ulator is easy to use (consisted of only approx. 500 lines
of code at its core); it has shown good performance, some-
times even outperforming some compiler-based simulators. On
top of this simulator, we have developed models for multi-
core processors, memory/cache, and interconnection networks
(such as torus, dragonfly, fat-tree). We are currently focusing
on computational physics applications, including benchmark
applications (e.g., PolyBenchSim, ParboilSim) and production
applications (e.g., SNAPSim, SPHSim, SpecTADSim).


