
An Energy Efficient Demand-Response Model for
High Performance Computing Systems

Kishwar Ahmed, Jason Liu
School of Computing and Information Sciences

Florida International University
Emails: {kahme006,liux}@cis.fiu.edu

Xingfu Wu
Mathematics and Computer Science Division

Argonne National Laboratory
Email: wuxf@tamu.edu

Abstract—Demand response refers to reducing energy con-
sumption of participating systems in response to transient surge
in power demand or other emergency events. Demand response is
particularly important for maintaining power grid transmission
stability, as well as achieving overall energy saving. High Per-
formance Computing (HPC) systems can be considered as ideal
participants for demand-response programs, due to their massive
energy demand. However, the potential loss of performance
must be weighed against the possible gain in power system
stability and energy reduction. In this paper, we explore the
opportunity of demand response on HPC systems by proposing a
new HPC job scheduling and resource provisioning model. More
specifically, the proposed model applies power-bound energy-
conservation job scheduling during the critical demand-response
events, while maintaining the traditional performance-optimized
job scheduling during the normal period. We expect such a
model can attract willing participation of the HPC systems in
the demand response programs, as it can improve both power
stability and energy saving without significantly compromising
application performance. We implement the proposed method
in a simulator and compare it with the traditional scheduling
approach. Using trace-driven simulation, we demonstrate that
the HPC demand response is a viable approach toward power
stability and energy savings with only marginal increase in the
jobs’ execution time.

I. INTRODUCTION

High Performance Computing (HPC) systems, such as
petaflops supercomputers, can consume a tremendous amount
of power. For example, as of November 2016, China’s 34-
petaflops Tianhe-2 supercomputer, which currently consumes
the most power in the list of top 500 supercomputers [1],
has been reported to consume almost 18 MWs of power,
sufficient to power a small town of 20,000 residences. With
the advent of exascale supercomputers in the next few years,
power consumption of the HPC systems will surely increase.
The massive power consumption of these HPC systems can
expound significant stress for the power grid. HPC has also
shown significant fluctuations in the power consumption
due to the varying job execution profiles and also sporadic
maintenance schedules. Effective power saving and power
stabilizing methods must be seriously considered when building
future HPC systems.

Demand response programs are designed to help energy
service providers to stabilize the power system by reducing the
energy consumption of participating systems when the power
grid becomes unstable due to a sudden rise in power demand

or other emergency incidents (which we refer to as demand
response events). The U.S. Department of Energy (DoE) and
the National Institute of Standards and Technology (NIST) have
identified demand response as one of the important policy goals
to achieve power grid efficiency [2], [3]. In addition to monetary
benefits, demand response can also provide the associated
environmental benefits, such as reducing carbon emission [4].
We have observed recent increase in the participation of the
demand response programs in various sectors [5], [6]. Recent
projection also shows that there will be substantial growth
in the coming years—an anticipated doubling of the overall
participation in the demand response programs in 2020 has
been projected [7].

With such rising popularity of demand response programs,
it is not surprising that there exists a large body of research
that study demand response participation focusing on various
sectors (e.g., data centers [8], smart buildings [9]). These studies
exploit various job scheduling schemes (e.g., load shifting,
job queuing, geographical load balancing) and leverage many
resource management parameters (e.g., speed-scaling, server
consolidation, power-capping) to enable demand response
program participation. Such studies, however, are not confined
to theoretical realm only. Some recent reports suggest that
many large-scale companies have already been participating in
demand response programs [10], [11]. An empirical study [12]
also demonstrated feasibility of data center’s participation in
demand response programs. Through adopting various demand
response strategies (such as server consolidation, job scheduling,
workload migration), the study [12] demonstrated data center’s
capability of reducing energy consumption during demand
response periods.

Being a massive energy consumer of the power grid, the
HPC sector can contribute toward ensuring grid stability
and energy reduction through its participation in the de-
mand response programs. Recent research has studied the
feasibility and identified the associated challenges in the
HPC demand response [13], [14]. Patki et al. [14] suggested
that supercomputing systems in the U.S. may be willing to
participate in the demand response programs if tighter and
more frequent communications can be established between
the supercomputing centers and their energy service providers.
The study also suggested that various supercomputing centers
are interested to develop demand response capability through

enhancing software system for resource management (e.g.,
power-capping, job scheduling) [13]. This study is based
on a qualitative analysis of cooperative demand-management
strategies. We note, however, that there is no related work
on the job scheduling and resource provisioning strategies at
HPC centers that can operate with demand response. Various
energy-efficient HPC job scheduling algorithms (e.g., [15],
[16]) and resource provisioning methods (e.g., [17], [18]) have
been proposed in the literature. These studies aim at reducing
the overall energy consumption of the HPC systems, but do
not consider demand response.

In this paper, we explore the opportunities of the HPC centers
participating in the demand response programs through a study
of detailed job scheduling and resource provisioning strategies.
More specifically, this paper makes the following contributions:
• We propose an HPC job scheduling and resource provi-

sioning algorithm for demand response. For job scheduling, we
assume first-come-first-serve (FCFS) with possible job eviction
and restart in response to the reduced power level during
the demand response periods. For resource provisioning, we
dynamically scale the frequency of the processors in order
to achieve optimal energy conservation and power stability
during the demand response periods. During normal periods,
the processors in HPC systems operate at maximum frequency
for best performance.
• We developed a simulator for job scheduling and resource

provisioning to study the effect of demand response. The
simulator is built upon a parallel discrete-event simulation
engine capable for handling large-scale models. The simulator
has been validated using real-life HPC workload traces.
• We conducted extensive simulation studies to show the

effectiveness of the proposed job scheduling and resource
provisioning algorithm for demand response. The results
demonstrate that our proposed approach is a viable solution for
attracting supercomputing centers to participate in the demand
response programs as it can improve power stability and energy
reduction with only moderate increase in execution time for
the jobs.

The rest of this paper is organized as follows. Section II
describes related work and compares the existing approaches
with our proposed method. Section III proposes the model for
HPC demand response, including a job scheduling and resource
provisioning algorithm. We also describe the energy and per-
formance models used by the algorithm. Section IV discusses
our job scheduler simulator, which has been developed to study
the effectiveness of demand-response-aware job scheduling and
resource provisioning methods. Section V shows a comparative
study of our approach against traditional methods using real-life
HPC workload traces. Section VI concludes the paper with a
discussion on the assumptions and limitations of our approach,
and outlines some interesting directions for future work.

II. RELATED WORK

In this section, we discuss related work in performance
and power prediction models, dynamic voltage and frequency
scaling (DVFS) methods for energy saving, HPC job scheduling

and resource provisioning strategies, and demand response
techniques for data centers.

Many power and performance prediction models have been
proposed in the literature. For example, Singh, Bhadauria,
and McKee [19] proposed an analytical model for real-
time prediction of processor and system power consumption.
Performance monitoring counters are used to estimate the
power consumption of the processors. Shoukourian et al. [20]
proposed an analytical model for application-specific power
and energy prediction. Based on historical energy usage by
specific applications, the model predicts future power and
energy usage; the model can also adapt the prediction accuracy
with further execution of the applications. Wu et al. [21] also
presented performance and power models based on hardware
performance counters with CPU frequency. They used non-
negative multivariate regression analysis to build models for
application execution time, system power, CPU and memory
power, using a small set of major performance counters and
CPU frequency. They implemented a counter-ranking method
to identify the model contribution of the measured counters.
The model can be used to suggest modifications of applications
to improve execution time and power consumption.

Different energy saving techniques have also been proposed
for HPC systems. They include energy-efficient design for hard-
ware components, including CPU, memory, and interconnection
network. Saving energy intuitively implies a reduction in
power consumption, runtime, or both. Wu et al. [21] classified
the methods in this area into three categories: reduce time
and power, reduce time but allow an increase in power, and
reduce power while allowing an increase in time. Energy-
saving methods that exploit the dynamic voltage and frequency
scaling (DVFS) capabilities on processors have been introduced
(e.g., [17], [22], [23]). CPU MISER [17] is an early effort
that includes a runtime DVFS-based HPC power management
scheme, which exploits different application phases using
performance measurements (in cycles per instruction) during
the execution of the applications. Freeh et al. [23] proposed
an energy saving approach exploiting the energy-time trade-
off of MPI programs. Adagio [22] performs runtime CPU
frequency scaling and exploits the variations in the energy
consumption during computation and communication phases
of an application to reduce the overall energy consumption
without impacting the overall execution time of the application.
A more recent effort on DVFS by Bao et al. [18] automatically
selects the optimal frequency and core count at compile-time
to achieve lower energy.

Job scheduling and resource provisioning methods have
also been proposed for HPC systems to save energy. They
assume bounded energy consumption of the systems (e.g., [15],
[16]). Yang et al. [24] proposed a job scheduling approach to
exploit the variable electricity price and power consumption
profile of the jobs. A day is divided into two parts based on
the electricity price: on-peak and off-peak. Jobs are classified
based on their power profiles (derived from past execution
data). Low power-consuming jobs are executed preferably
during the on-peak time periods, while high power-consuming

jobs are executed preferably during the off-peak time periods.
Two power-aware job scheduling solutions are proposed: a
greedy policy and a 0-1 knapsack-based policy, where fairness
is ensured through a window-based scheduling mechanism.
Sarood et al. [15] proposed an online job scheduling and
resource allocation approach to achieve power-efficiency in
HPC systems. The resource management system leverages
over-provisioning, power-capping and job malleability (i.e.,
dynamic shrinking and expanding the job size) to optimally
allocate power and nodes. Cao, He, and Kondo [25] recently
proposed a job scheduling algorithm to limit the overall system
power consumption within a given power budget and improve
the system throughput and resource utilization. While we also
implement power-capped job scheduling in our proposed model,
our goal is to improve power grid stability and energy saving
for HPC demand-response participation. We schedule jobs
and allocate resources to achieve optimal energy (only during
demand response events), while theirs is to achieve power
capping.

There also exist efforts for green HPC through reducing
the use of brown energy in HPC systems. For example,
GreenPar [26] adopts different job scheduling strategies (e.g.,
dynamic job migration, and resource allocation) to reduce
brown energy consumption. ZCCloud [27] also explored
possibility of increasing wasted green renewable energy in
the system. The proposed model in the paper [27] can reduce
carbon footprint in the system, while achieving optimal job
performance (e.g., through reducing job turnaround time).
However, none of the proposed work considers demand
response participation specific to HPC systems, which is the
goal of our study described in this paper.

Workload scheduling and resource provisioning in data center
with consideration of demand response scheme have been
studied quite extensively. Load shifting in time, geographical
load balancing, speed-scaling, server consolidation, power-
capping are some of the approaches proposed in the literature
for data center’s demand response [8]. Caramanis et al. have
also studied demand response participation for both data centers
(e.g., [28]) and smart buildings (e.g., [9]). These studies address
the problem of ensuring data center’s participation in demand
response program through responding to regulation signal
from the power grid, while considering intermittent renewable
energy sources. However, these approaches are applicable for
internet transaction-based data center workload, not for HPC
applications. For data center workload, the service time is
typically assumed to be uniform and delay intolerant (most
jobs need to be serviced within the hour from which they are
submitted). HPC jobs are much less uniform both in terms of
service time and job size (requested resources in the number
of processors). Also, most HPC jobs can tolerate some delays
(given that some jobs may take hours or days to finish). As such,
the data center demand-response models cannot be applied to
HPC systems.

To the best of our knowledge, the solution outlined in this
paper is the first demand-response-aware job scheduling and
resource provisioning scheme for HPC applications.

III. HPC DEMAND RESPONSE MODEL

In this section, we present our HPC demand response model.
At first, we present performance and energy models based
on frequency scaling in section III-A, which we use for
determining a job’s runtime and energy consumption in the
proposed job scheduling and resource provisioning algorithm,
which we describe next in section III-B. The algorithm involves
dynamically adjusting the processors’ frequency for all running
jobs in order to achieve optimal energy conservation, which
we describe in section III-C. The algorithm possibly involves
evicting running jobs during a demand-response period if the
power consumption exceeds the set limit. We describe an
optimal job eviction method in section III-D.

A. Power and Performance Prediction Models

Consider the set of jobs to be executed on an HPC system
is {1, 2, · · · , J}. For each job j, we denote the average power
consumption running at CPU frequency f as p(j, f), and the
execution time as t(j, f). There are a number of existing models
for predicting a job’s average power consumption and execution
time. Here, we use a rather simple regression-based model. We
derive the relationship between CPU power and runtime with
respect to frequency using linear regression. To do so, we first
observe the average power and runtime characteristics of each
job running at different frequency values. We then determine
a polynomial fitting function based on the observed data.

Similar approaches can be found in other studies (e.g., [29],
[30]). The purpose of this study is to assess the feasibility
of having HPC centers to participate in the demand response
programs, by proposing a job scheduling and resource provi-
sioning algorithm that can improve power stability and energy
conservation while maintaining good application runtime
performance. Here we choose simple prediction models, which
can be later improved for more general applications.

For determining the average power consumption, we use a
similar model as proposed in the paper [21]. The average power
consumption of job j running on a processor at frequency f
can be estimated using the following third-order polynomial
function:

p(j, f) = a+ b · f + c · f2 + d · f3 (1)

where a, b, c, and d are constants determined from empirical
analysis of average power relation with different frequency
values. Here, a represents the static power consumption while
running the job.

In a similar approach, we can determine the execution time
of job j at frequency f using the following function:

t(j, f) = α+ β · f + γ · f2 (2)

where α, β, and γ are regression coefficients determined from
polynomial fitting function using empirical data.

We assume that a job j runs with the same CPU frequency
f on all nj processors. As such, the total energy consumption
of the job can then be determined as follows:

e(j, f) = nj · p(j, f) · t(j, f) (3)

 50

 100

 150

 200

 250

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Av
er

ag
e

Po
w

er
 (W

at
t)

CPU Frequency (GHz)

Quantum ESPRESSO
Gadget
Seissol
WaLBerla
PMATMUL
STREAM

(a) Average Power

 0

 20

 40

 60

 80

 100

 120

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Ex
ec

ut
io

n
Ti

m
e

(M
in

)

CPU Frequency (GHz)

Quantum ESPRESSO
Gadget
Seissol
WaLBerla
PMATMUL
STREAM

(b) Execution Time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

En
er

gy
 C

on
su

m
pt

io
n

(K
J)

CPU Frequency (GHz)

Quantum ESPRESSO
Gadget
Seissol
WaLBerla
PMATMUL
STREAM

(c) Energy Consumption

Fig. 1. Result of the power and performance prediction models for six HPC
applications.

To illustrate the power and performance prediction models,
we collected frequencies and frequency-related power varia-
tions for six HPC applications from an existing study [29].
More specifically, the six applications include four scientific
applications (including Quantum ESPRESSO [31], Gadget [32],
Seissol [33] and WaLBerla [34]) and two synthetic benchmarks
(where PMATMUL is a parallel benchmark for dense matrix
multiplication, and STREAM is a benchmark for measuring
sustainable memory bandwidth [35]). Measurements were
collected when running these applications with different CPU
frequencies, ranging from 1.2 GHz to 2.7 GHz.

We use the regression models to derive the least square

polynomial fitting functions representing the relationship of
average power consumption and execution time with the scaling
frequency for each application. Fig. 1 shows the result from
the power and performance regression models for the six HPC
applications, as well as their total energy consumption. Fig. 1(a)
and Fig. 1(b) show the empirical data and fitted polynomial
function for average power and execution time, respectively.
Fig. 1(c) shows the total energy consumption for different
frequencies, derived from the average power and execution
time polynomial fitting function models. The regression models
we use for this study generally incur low prediction errors.
For example, errors for predicting execution time are 0.69%,
1.1%, 0.68%, 1.25%, 0.95% and 1.14% for the applications
Quantum ESPRESSO, Gadget, Seissol, WaLBerla, PMATMUL
and STREAM, respectively. Errors for predicting power using
our model are 0.14%, 0.44%, 1.01%, 0.82%, 1.32% and 0.53%
for the same set of applications.

In general, the average power consumption of the appli-
cations increases as we increase the CPU frequency. The
execution time decreases as we increase the CPU frequency.
The total energy for running the applications is the product
of the average power and execution time, which may either
increase, decrease, or have its minimum somewhere in the
given frequency range, depending on the applications.

B. Job Scheduling and Resource Provisioning

We describe the proposed job scheduling and resource
provisioning algorithm. When a job is submitted, it is inserted
in the waiting queue Q and the job scheduling algorithm is
invoked. Here we use the first-come-first-serve (FCFS) policy,
although other job scheduling policies can be applied as well.

The job scheduler keeps the list of running jobs R. Each
job j ∈ R runs on nj processors as requested. The scheduler
determines the frequency of the processors, fj , that the job
is run. The frequency can be changed dynamically during the
job’s execution depending on the current running jobs and the
available power limit. (We assume all processors running the
same job maintain the same frequency nevertheless.)

Let fmin and fmax denote the minimum and maximum
frequency allowed by the HPC processor architecture. That is,

fmin ≤ fj ≤ fmax (4)

Let p̂ be the current power limit set by the energy service
provider. The power cap p̂ can be set to a lower value during a
demand response period and infinite otherwise. In any case, the
scheduling algorithm needs to ensure that the average power
consumption of all the running jobs, prun, is bounded by the
current power limit. That is,

prun =
∑
j∈R

p(j, fj) ≤ p̂ (5)

The pseudo-code of the proposed HPC scheduler is shown
in Alg. 1. When invoked, the scheduler first checks to see if
there is an eligible job to run in the job waiting queue (line
1). We scan the waiting jobs from the head of the queue to
the tail of the queue according to the FCFS policy. The job w

Algorithm 1 HPC Demand Response Job Scheduler
1: find the first eligible job j in Q
2: if job j exists then
3: dequeue job j from Q
4: allocate nj processors to run job j
5: R← R ∪ {j}
6: goto line 1
7: end if
8: determine optimal frequency ∀j ∈ R (section III-C)
9: if no optimal solution exist then

10: evict jobs to reduce power consumption (section III-D)
11: goto line 8
12: end if
13: reset processor frequency if changed ∀j ∈ R

is eligible to run, (a) if there are enough available processors,
that is,

nw +
∑
j∈R

nj ≤ n̂ (6)

where n̂ is the total number of processors in the system, and
(b) if the average power consumption of all running jobs
remains within the power limit (assuming we run job w with
the minimum allowed frequency):

p(w, fmin) + prun ≤ p̂ (7)

If such a job is found, we remove the job from the waiting
queue (line 3) and allocate the processors to run the job (line
4). The new job is placed into R, which maintains the set of all
currently running jobs (line 5). This process is then repeated
until we find all eligible running jobs from the waiting queue.

Before the new jobs begin, we first need to determine the
optimal frequency of the processors to run them (line 8). Also,
it may be necessary to adjust the frequency of existing running
jobs (not just the new arrivals) to achieve the optimal energy
conservation. We discuss the details of calculating optimal
frequencies in section III-C.

The job scheduler is invoked when a new job is submitted
or when a running job has finished execution. In the latter case,
the completed job is simply removed from R and the scheduler
is invoked so that other eligible jobs can be scheduled to run.
Another possible case for invoking the scheduler is when the
energy service provider changes the power limit p̂ of the HPC
system. This can be the start of a demand response event,
in which case a lower power limit is imposed, or at the end
of a demand response event, when the power limit returns
to normal (e.g., infinite or some higher values for hardware
overprovisioned systems [36]). If the power limit is reduced
for a demand response event, it is possible that no optimal
solution can be found for frequency scaling of the existing
running jobs. In that case, one or more running jobs must be
terminated prematurely to preserve power (line 10). We discuss
this step in more detail in section III-D on how to choose
the victims so that we can minimize the overall impact. Once
the eviction is done, we need to calculate again the optimal
frequency of the remaining running jobs.

In the last step (line 13), we change the frequency of the
processors of the running jobs, as long as their newly calculated
frequency is different from the previous settings. The job
scheduler finishes the current invocation and will wait until it
is invoked again in response to either a new job arrival, a job
departure, or a demand response event.

C. Determining Optimal Frequency

This step is to calculate the frequency of the processors
running the jobs. During the normal operating time, the power
limit should be infinite (or set to be the peak power), in which
case the jobs can run at the maximum allowed CPU frequency,
i.e., fmax, to achieve the best performance. This is a conscious
decision. HPC systems are designed for high performance. A
willing participation of supercomputing centers in the demand
response programs should not alter the main design purpose of
these HPC systems. We want to minimize the overall impact
of demand response, in this case, by recovering the potential
performance loss by maximizing the application performance
outside the demand response periods.

However, once a demand response event happens, we need
to resort to the energy conservation mode. In this case, we
want to select the proper CPU frequencies of all running jobs
so that we can minimize the energy use while observing the
reduced power limit set by the energy service provider. By
reducing the energy demand, we can contribute to stabilizing the
power grid which may encounter possible emergency situations.
This frequency selection problem can be formulated as an
optimization problem, as follows:

Minimize:
∑

j∈R eR(j, fj)

subject to constraints (4) and (5)

where eR(j, fj) denotes the remaining energy expected to be
consumed if running job j at frequency fj . It can be calculated
as follows:

eR(j, fj) = (1− αj) · nj · p(j, fj) · t(j, fj) (8)

where αj is the percentage of job j that has been completed
thus far. This quantity can be accumulated by the job scheduler
upon each time the job is updated with a new frequency.

It is commonly believed that the energy and frequency
observe the convexity property under certain conditions [37],
such as a job’s average power consumption and execution time
are monotonic functions of the frequency within a given range.
This convexity property suggests the existence of an optimal
frequency where energy consumption can be minimalized. We
can therefore solve the optimization problem with the sequential
least squares programming algorithm using the Han-Powell
quasi-Newton method [38]. The optimization problem solver
returns the frequencies f1, f2, ·, f|R| for all running jobs in
j ∈ R. Note that in practice, processors can choose from a
certain set of frequencies dictated by hardware. In this case,
we can pick the closest allowed frequency that is no larger
than the optimal frequency value.

D. Job Eviction

As mentioned earlier, with reduced power limit during
a demand response event, it is possible that no optimal
frequencies can be found for the existing running jobs, in
which case some jobs have to be terminated to preserve power.
In this section, we provide an algorithm for choosing the jobs
so that we can minimize the impact.

We represent the selection of job j by a binary variable,
xj ∈ {0, 1}, where xj = 1 denotes that job j is selected to
continue and xj = 0 denotes that job j is selected for eviction.
We formulate an optimization problem to determine the optimal
subset of the running jobs such that the power bound constraint
can be satisfied, with the objective of maximizing the energy
that has already been spent by the running jobs. The idea
is that we want to keep the jobs that have consumed more
energy, because evicting them would mean this energy would
be wasted as they need to rerun.

We formulate the optimization problem as follows:

Maximize:
∑

j∈R (xj · eX(j))

subject to
∑

j∈R (xj · p(j, fmin)) ≤ p̂

where eX(j) is the energy that has so far been spent running
job j. On the one hand, the job scheduler can accumulate
eX(j) using power measurement. On the other hand, we can
adopt an easier alternative, by estimating the energy cost of
a job using the job’s completion percentage value αj and the
projected energy used under the current frequency fj . That is,

eX(j) ≈ αj · nj · p(j, fj) · t(j, fj) (9)

We can convert this optimization problem into a 0-1 knapsack
problem and solve it directly. In this case, we treat p̂ as the
knapsack capacity, p(j, fmin) as the weight associated with
each job, and the spent energy eX(j) as the job’s value.

IV. JOB SCHEDULER SIMULATOR

We use simulation to study the effect of the proposed
job scheduling and resource provisioning algorithm both on
performance and energy. Plenty job scheduler simulators
exist. For example, PYSS (Python Scheduler Simulator) is
an open-source HPC workload scheduling simulator written in
Python [39]. The simulator was developed by the Experimental
System Lab at the Hebrew University, and has been used to
study various scheduling algorithms (e.g., [40], [41]). CQSim
is another event-based simulator to study the detailed queuing
behavior of job schedulers using real system workload [42]. The
simulator was developed by Illinois Institute of Technology
and has been used to evaluate fault-aware utility-based job
scheduling [43], adaptive metric-aware job scheduling [44], and
so on. Current HPC simulators provide only limited capabilities
for studying job scheduling. For example, SST/Macro contains
only limited support for running multiple jobs via trace
replay [45]. CODES offers similar capabilities using trace
replay to study multi-job workload of proxy applications and
their impact on communication over different interconnection
networks [46].

job arrival

Job
Dispatcher

Waiting Jobs Running Jobs

Job
Executioner

job departure

Resource
Manager

Processor
Allocation

Power
Allocation

Application
Models

Power
Models

Performance
Models

power demand
change

Scheduling
Policies

job eviction

Fig. 2. The overall design of our job scheduler simulator.

In general, job scheduling is relatively straightforward to
simulate and validate. We developed our own simulator with
trace-driven capabilities so that we can have the flexibility to
incorporate new scheduling functions, power-aware methods,
as well as demand response models.

A. Simulator Design

Our job scheduler simulator is developed based on Simian,
which is an open-source, process-oriented, parallel discrete-
event simulation engine [47]. Simian has several unique
design features that make it more attractive for us to build
our scheduler simulator. First, Simian has a very simple
application programming interface (API). The simulator adopts
a minimalistic design with only a handful of core functions.
The code base is around 500 lines at its core, which makes
it easier to understand and debug the applications. Simian
also supports process-oriented world view for easy model
development. Second, Simian is developed using interpreted
languages, including Python, LUA, and Javascript. Simian
takes advantage of just-in-time (JIT) compilation and, for
some models, has demonstrated capable of even outperforming
simulators using compiled languages, such as C or C++. Simian
is also a parallel discrete-event simulator, capable of running
large-scale models on parallel platforms. Third, there has been
a significant ongoing effort in developing models for HPC
architectures and applications using Simian (e.g., [48], [49],
[50], [51]). Our job scheduler can take advantage of these
models.

The overall design of the simulator is illustrated in Fig. 2. The
job scheduler simulator consists of five major components: a job
dispatcher, a job executioner, scheduling policies, application
models, and a resource manager. The job dispatcher takes four
different types of events: job arrival, job departure, job eviction
(when an executed job is interrupted and removed in the middle
of the run), and power demand change (when the power service
provider of the HPC center changes the current power limit
either at the start or the end of a demand response event). When
a job is submitted, it enters the job waiting queue and invokes
the job dispatcher. The job dispatcher determines whether the
job is eligible to run according to the application models (that
describe the job’s power and performance characteristics) and
the current available resources from the resource manager.

The job dispatcher processes the jobs from the waiting queue
according to the scheduling policies. For this study, we only
use FCFS, although other policies, such as backfilling [52],
may be incorporated as well.

When a job is scheduled to run, the job dispatcher removes
the job from the waiting queue and put it in the list of running
jobs. The job executioner allocates the resources using the
resource manager to represent the occupied processors (at
the specified frequencies) with associated power consumption
for running the job. The job executioner then simulates the
job’s execution accordingly. For this study, it is sufficient to
simulate using the job’s execution time and power consumption
according to the estimates from the power and performance
models. Detailed job execution can also be simulated for
specific computation and communication demands, in case
one needs to model the application’s runtime behavior. When
a job completes its execution, the job executioner removes
the job from the list of running jobs, reclaims the resources
occupied by the job, and then invokes the job dispatcher to
select new eligible jobs to run.

Our simulator has also been augmented to handle demand
response. We can schedule an event to indicate the power
demand change, with a lower power limit upon the arrival of
a demand response event, or an another when the power limit
returns to level for normal operations. In the former case, the
job executioner may evict jobs if the current power level is no
longer sufficient to support all running jobs. In the latter case,
the job scheduler may start new jobs to run.

B. Simulator Validation

We conducted experiments to validate the basic functions of
our job scheduler simulator. We used the real system workload
traces, obtained from the Parallel Workloads Archive [53].
The workload traces contain runtime information collected
at the San Diego Supercomputer Center (SDSC) during the
time period from May 1998 through April 2000. The runtime
information contains the job start time, the job run time, the
requested number of processors, and the job wait time, etc. We
use this dataset for validation by comparing the performance
of our simulator with that of PYSS [39], which has been
previously validated against empirical results.

The results are shown in Fig. 3. The specific workload trace
we use contains 5,000 jobs running on a system with 512
processors. The top plot shows the length of the job waiting
queue as it fluctuates over time. The bottom plot shows the
number of available processors in the system. In both cases,
we can observe that our simulator generates results that match
well with those from PYSS.

V. PERFORMANCE EVALUATION

In this section, we present an elaborate trace-based simulation
study to evaluate the effectiveness of the proposed HPC job
scheduling and resource provisioning algorithm for demand
response.

 0

 10

 20

 30

 40

 50

 60

 0 1e+06 2e+06 3e+06 4e+06 5e+06

Q
ue

ue
 L

en
gt

h

Time (s)

PYSS
Our Simulator

 0

 100

 200

 300

 400

 500

 600

 0 1e+06 2e+06 3e+06 4e+06 5e+06

Av
ai

la
bl

e
Pr

oc
es

so
rs

Time (s)

PYSS
Our Simulator

Fig. 3. Comparing results from PYSS and our simulator.

A. Data Sets for Benchmarking

We use real-life workload trace to evaluate our design.
More specifically, the trace was collected at the San Diego
Supercomputer Center (SDSC SP2), which contains 5,000 jobs.
This trace has been used widely in the literature, and referenced
in a number of studies throughout the years to generate useful
workloads (e.g., [54], [55]).

The workload trace we collected does not contain any power
usage information. Therefore, we collected and used power-
related information from literature for this study. We use the
performance and power data at different frequencies for four
HPC applications (Quantum ESPRESSO, Gadget, Seissol and
WaLBerla), as outlined in Section III. We use discrete frequency
values for the processors, ranging from 1.2 GHz to 2.4 GHz
at 0.2 GHz intervals and 2.7 GHz. The peak power of the
processors was set to 220 W (determined from the power
consumption of the four HPC applications when running at the
maximum frequency). We target three HPC systems, which
consist of 128, 256, and 512 processors, respectively. The
peak power capacity for the 512-processor system can reach
112.64 KW.

To evaluate the performance of our job scheduling and
resource provisioning algorithm for demand response, we
compare it with two scheduling policies that do not consider
demand response. Performance-policy is one of the CPU
frequency scaling policies implemented in the Linux kernel [56].
It always chooses the maximum frequency to ensure best
application runtime performance [18]. Powersave-policy is
the opposite to the previous one, also implemented in the

Linux kernel [56]. Under this policy, the processors are run
instead with the minimum frequency, to minimize the power
consumption for application execution.

In the following, we show the results from our simulation
study. We first present the power capping capability of our
demand-response algorithm. We then compare results from
the demand response algorithm with those from the two
demand-response-agnostic policies, both in terms of average
job turnaround time and average energy consumption. Next, we
show the potential improvement in the power stability achieved
by the demand response algorithm. Finally, we perform a
sensitivity study, where we artificially introduce errors in the
power and performance prediction models to study their effect
on our proposed approach.

B. Power Capping

During a demand response event, the proposed job schedul-
ing and resource provisioning algorithm switches to the
energy conservation mode. In addition, the system’s power
consumption is also kept to be within a given power limit
in order to improve power stability. To show its effect of
power capping, we designed an experiment by changing the
power limit at different time intervals to demonstrate that
our algorithm can schedule jobs according to the set power
constraint at the time.

In this experiment, we arbitrarily set different power limit
over time. Fig. 4 shows the result when we set the power
limit at regular intervals to be 50%, 30%, 41.7%, 15%, and
30% of the system’s peak power. The figure shows the power
usage of the system over time, with and without power capping.
In the former case, we used our demand response algorithm.
In the latter case, we used the default performance-policy,
which selects the maximum CPU frequency to run the jobs.
The figure shows that our demand response algorithm can
adapt to the changes in the power limit and schedule jobs
accordingly under the power constraint. As a result, the power
usage for demand-response policy does not go beyond the
dynamically changed power limit throughout the time period.
However, performance-policy does not consider power capping
constraint during job scheduling decision. Therefore, the power
limit is often violated in such policy: power usage often goes
beyond the power limit. This is evident from Fig. 4(b).

C. Energy versus Performance

We conducted second set of experiments to study the effect
of the proposed scheduling algorithm for demand response on
the job’s energy consumption and execution time.

For this study, we vary the system size to be 128, 256, or 512
processors. We assume that a demand response event happens
randomly during the system’s operation and lasts for 25% of
the entire duration of operation. When the demand response
event happens, we expect the power limit of the system to drop
to 80% from the peak power. We measure the job turnaround
time to be between the time when the job is submitted and the
time when the job has completed its execution. We report the
average job turnaround time and the average energy among

 0

 10

 20

 30

 40

 50

 60

 1x10
6

 2x10
6

 3x10
6

 4x10
6

Power Limit

P
o
w

e
r

U
s
a
g
e
 (

K
W

)

Time (s)

(a) With Power Capping

 0

 20

 40

 60

 80

 100

 120

 1x10
6

 2x10
6

 3x10
6

 4x10
6

P
o
w

e
r

U
s
a
g
e
 (

K
W

)
Time (s)

(b) Without Power Capping

Fig. 4. Power usage over time with and without power capping.

all jobs. For the demand response algorithm, we also make a
distinction of the average turnaround time and average energy
between jobs that start inside or outside the demand response
period. Finally, we compare the results of our demand response
algorithm with those from using the performance-policy and
the powersave-policy.

The top plot in Fig. 5 shows the average job turnaround
time decreases for all scheduling policies when we increase
the system size (from 128 to 256 to 512 processors). This
is expected: the average job waiting time would decrease
due to less contentions when more resources are available.
The scheduler running performance-policy has the smallest
job turnaround time among the three scheduling algorithms
since it always uses the maximum CPU frequency to achieve
best application runtime performance. Our demand response
algorithm operates in the same way as the performance-policy
during the normal operation time (non-DR event), but performs
slightly worse than the performance-policy during the demand
response time period (DR Event). The processors may be set
to run jobs with less than the maximum frequency in order to
achieve the optimal energy conservation during the demand
response period.

The bottom plot of Fig. 5 shows the average energy
consumption of the jobs. The per-job energy consumption is
largely independent of the system size. The difference between
performance-policy and powersave-policy is almost negligible,

 1000
 1500

 2500

 3500

 4500

 5500

128 256 512

Av
er

ag
e

Tu
rn

ar
ou

nd
 T

im
e

(s
)

Number of Processors

Performance-policy
Demand-response (DR Event)
Demand-response (Non-DR Event)
Powersave-policy

 200

 220

 240

 260

 280

 300

128 256 512

Av
er

ag
e

En
er

gy
 (K

J)

Number of Processors

Performance-policy
Demand-response (DR Event)
Demand-response (Non-DR Event)
Powersave-policy

Fig. 5. Comparing performance and energy for different scheduling policies
and with different system size.

which is not unexpected. As shown previously in Fig. 1(c),
the energy consumption of the four applications we choose for
our study (e.g., Seissol) is at a similar level at both frequency
extremes (at 1.2 GHz and 2.7 GHz). Considerable energy
savings (around 15%) are achieved during the demand response
period, when our algorithm finds the optimal CPU frequencies
to achieve the best energy conservation for running the jobs.

We observed that both average job turnaround time and av-
erage job energy consumption depend on the demand response
event ratio (i.e., the percentage of time in the system operation
that demand response happens). In the next experiment, we
fixed the system size to be 512 processors and varied the
demand response event ratio from 20% to 100%. Fig. 6 shows
the results. The top plot shows that the average turnaround
time increases only slightly for our scheduling algorithm when
the demand response event lasts longer. Relative to the average
job turnaround time achieved by performance-policy (which
does not change with the demand response event ratio), we see
that the demand response algorithm may introduce an increase
between 4.4% and 21.0% in the average turnaround time.

The bottom plot shows that the average job energy consump-
tion decreases with the longer demand response event, since
our scheduling algorithm would be more likely to operate in
the energy-conservation mode. Relative to the average energy
achieved by powersave-policy, we see that the demand response
algorithm can achieve energy savings from 2.9% to 10.6%.

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 20 25 33 50 100

A
v
e

ra
g

e
 T

u
rn

a
ro

u
n

d
 T

im
e

 (
s
)

Demand-response Event Ratio (%)

Powersave-policy
Demand-response

4.4% 5.4% 6.9%
10.7%

21.0%

Performance-policy

 230

 235

 240

 245

 250

 255

 260

 20 25 33 50 100

A
v
e

ra
g

e
 E

n
e

rg
y
 (

K
J
)

Demand-response Event Ratio (%)

Powersave-policy
Performance-policy
Demand-response

2.9%
3.4%

4.2%

5.8%

10.6%

Fig. 6. Impact on the demand response event ratio.

 6.5

 6.75

 7

 7.25

 7.5

 7.75

 8

 20 25 33 50 100

P
o
w

e
r

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

Demand-response Event Ratio (%)

2.8% 3.0%
3.7%

7.7%

15.6%

Fig. 7. Power stability during the demand response periods.

D. Power Stability

An important aspect of the demand response program is that
it is expected to help stabilize the power system during the
demand response periods when the power grid may encounter
instability, either due to the sudden rise in the demand or
because of some emergency incidents. In this case, we would
like to be able to minimize the fluctuations in the power demand
of the HPC systems during the demand response events.

Fig. 7 shows the standard deviation of power usage of
the system over time. In this experiment, we use the same
simulation setup as in the previous experiment. We observe
that the standard deviation of the power consumption decreases
as the demand response event ratio increases. Relative to the
standard deviation of the power usage under performance-

 200

 220

 240

 260

 280

 300

0 2 4 6 8 10

Av
er

ag
e

En
er

gy
 (K

J)

Error in Power (%)

Demand-response
Performance-policy

 200

 220

 240

 260

 280

 300

0 2 4 6 8 10

Av
er

ag
e

En
er

gy
 (K

J)

Error in Execution Time (%)

Demand-response
Performance-policy

Fig. 8. The effect of prediction error in power and execution time.

policy, the demand response algorithm is shown to have
achieved a reduction from 2.8% to 15.6%, and thus can
contribute to the stability of the power system.

E. Sensitivity Study

In this subsection, we present the results from a sensitivity
study based on inaccuracy for power and execution time
prediction models. Fig. 8 shows the effect of prediction error
on the average energy consumption.

In this experiment, we introduced the errors in the power and
execution time of the jobs by adding a random error margin,
from 0% to 10% with an increment of 2%. As can be seen
from Fig. 8(a), with increase in error for power predictions,
the average energy consumption for both demand-response
and performance-policy increases (for as much as 10%). Our
demand-response scheme achieves lower energy compared
to the performance-policy scheme. Similar conclusions can
be derived for introduced error in execution time prediction
model; the demand-response scheme also achieves lower energy
consumption consistently compared to the performance-policy
scheme with increased prediction error.

VI. CONCLUSIONS

We propose a demand-response-aware job scheduling and
resource provisioning algorithm for HPC systems. The job
scheduling algorithm operates between the power-constrained
energy-conservation mode (using DVFS) and the performance-
conservation mode, depending on whether the system is in
a demand response period or not. We developed a scheduler
simulator to evaluate the effectiveness of our approach. The

simulator has been validated by comparing with existing
simulators using real-life workload traces. We performed
evaluation studies and results have demonstrated that our
proposed demand response method can achieve energy savings
with only moderate impact to the application performance due
to demand response. As such, we conclude that it is feasible
for the HPC centers to participate in the demand response
programs.

This current paper only provides a preliminary study in job
scheduling and resource provisioning for demand response,
since our proposed system is based on a simulator. However,
note that we already considered modeling the most important
factors: time, power cap, and energy. In the remainder of this
section, we discuss the assumptions and limitations of our
proposed approach, and point out some possible directions for
future investigations.

Our job scheduler uses linear regression models for pre-
dicting the job’s power consumption and execution time.
Regression models require empirical measurements of each
application’s power consumption and execution time with
different CPU frequencies. In practice, this may not be readily
available a priori, especially for unknown applications, at
the job’s submission. More advanced models may be applied
in this case. High-level application models, like the AEPCP
model [20], which allows for ahead-of-time prediction and
online adaptation with further execution of the application,
can be useful. Inference and learning techniques (such as
artificial neural networks) may also be employed to help in
these scenarios [57], [58]. Our power prediction model does
not consider the power consumption of memory, I/O, and other
power sources, such as cooling, etc. These factors need to be
considered for a more holistic demand response solution.

Our demand response job scheduler considers only processor-
level frequency scaling. Some current HPC systems can support
only machine-level DVFS. In future systems, frequency scaling
may also be available more commonly at individual cores. We
have not yet investigated these options. Moreover, frequency
scaling is not the only control knob for energy saving and power
capping. More adaptable power-aware scheduling policies
and resource provisioning algorithms should be considered
in addition to frequency scaling. There are also techniques that
consider power consumption as a function of computation and
communication at the system level and/or at the sub-job level.
For example, Adagio [22] considers variations in the energy
consumption during computation and communication phases of
the applications. Also, SERA-IO [59] replaces the traditional
I/O middleware with an energy-conscious mechanism that
combines with DVFS for power-performance scheduling. These
techniques can be considered to allow more effective demand
response.

ACKNOWLEDGMENTS

This work is supported in part by NSF grants CNS-1563883,
ACI-1550126, and CCF-1619236, the DOE LANL LDRD
Program, and a USF/FC2 SEED grant.

REFERENCES

[1] TOP500.org, “Top 500 list,” https://www.top500.org/lists/2016/11/, 2016.
[2] D. G. Holmberg, S. T. Bushby, and D. B. Hardin, “Facility smart grid

interface and a demand response conceptual model,” NIST, Tech. Rep.
NIST Technical Note 1832, 2014.

[3] Federal Energy Regulatory Commission, “Assessment of demand re-
sponse and advanced metering,” https://www.ferc.gov/legal/staff-reports/
2016/DR-AM-Report2016.pdf, 2016.

[4] PJM Interconnect, “Demand response and why its important,” https:
//www.pjm.com/∼/media/markets-ops/dsr/end-use-customer-fact-sheet.
ashx, 2014.

[5] The Energy Collective, “Demand response in the US elec-
tricity market,” http://theenergycollective.com/rasika-athawale/195536/
demand-response-us-electricity-market, 2013.

[6] J. McAnany, “2016 demand response operations markets activ-
ity report: April 2017,” http://www.pjm.com/∼/media/markets-ops/dsr/
2016-demand-response-activity-report.ashx, 2017.

[7] H. Marianne and W. Eric, “Market data: Demand response. residential,
commercial, and industrial demand response participation and sites,
load curtailment, and spending: Global and regional market sizing and
forecasts,” 2013.

[8] A. Wierman, Z. Liu, I. Liu, and H. Mohsenian-Rad, “Opportunities
and challenges for data center demand response,” in Green Computing
Conference (IGCC), 2014 International. IEEE, 2014, pp. 1–10.

[9] E. Bilgin, M. C. Caramanis, I. C. Paschalidis, and C. G. Cassandras,
“Provision of regulation service by smart buildings,” IEEE Transactions
on Smart Grid, vol. 7, no. 3, pp. 1683–1693, 2016.

[10] P. Fox-Penner, “Why apple is getting into the energy business,” https:
//hbr.org/2016/11/why-apple-is-getting-into-the-energy-business, 2016.

[11] Mission Critical Power, “Equinix in r&d phase of demand response exper-
iments,” https://missioncriticalpower.uk/equinix-tests-demand-response/,
2015.

[12] G. Ghatikar, V. Ganti, N. Matson, and M. A. Piette, “Demand response
opportunities and enabling technologies for data centers: Findings from
field studies,” 2014.

[13] N. Bates, G. Ghatikar, G. Abdulla, G. A. Koenig, S. Bhalachandra,
M. Sheikhalishahi, T. Patki, B. Rountree, and S. Poole, “Electrical
grid and supercomputing centers: an investigative analysis of emerging
opportunities and challenges,” Informatik-Spektrum, vol. 38, no. 2, pp.
111–127, 2015.

[14] T. Patki, N. Bates, G. Ghatikar, A. Clausen, S. Klingert, G. Abdulla,
and M. Sheikhalishahi, “Supercomputing centers and electricity service
providers: a geographically distributed perspective on demand manage-
ment in Europe and the United States,” in International Conference on
High Performance Computing. Springer, 2016, pp. 243–260.

[15] O. Sarood, A. Langer, A. Gupta, and L. Kale, “Maximizing throughput
of overprovisioned HPC data centers under a strict power budget,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 2014,
pp. 807–818.

[16] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, “Parallel job
scheduling for power constrained HPC systems,” Parallel Computing,
vol. 38, no. 12, pp. 615–630, 2012.

[17] R. Ge, X. Feng, W.-c. Feng, and K. W. Cameron, “CPU MISER: A
performance-directed, run-time system for power-aware clusters,” in
Parallel Processing, 2007. ICPP 2007. International Conference on.
IEEE, 2007, pp. 18–18.

[18] W. Bao, C. Hong, S. Chunduri, S. Krishnamoorthy, L.-N. Pouchet,
F. Rastello, and P. Sadayappan, “Static and dynamic frequency scaling
on multicore CPUs,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 13, no. 4, p. 51, 2016.

[19] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation
and thread scheduling via performance counters,” ACM SIGARCH
Computer Architecture News, vol. 37, no. 2, pp. 46–55, 2009.

[20] H. Shoukourian, T. Wilde, A. Auweter, and A. Bode, “Predicting
the energy and power consumption of strong and weak scaling HPC
applications,” Supercomputing frontiers and innovations, vol. 1, no. 2,
pp. 20–41, 2014.

[21] X. Wu, V. Taylor, J. Cook, and P. Mucci, “Using performance-power
modeling to improve energy efficiency of HPC applications,” IEEE
Computer, vol. 49, no. 10, pp. 20–29, 2016.

[22] B. Rountree, D. K. Lownenthal, B. R. De Supinski, M. Schulz, V. W.
Freeh, and T. Bletsch, “Adagio: making dvs practical for complex HPC
applications,” in Proceedings of the 23rd international conference on
Supercomputing. ACM, 2009, pp. 460–469.

[23] V. W. Freeh, F. Pan, N. Kappiah, D. K. Lowenthal, and R. Springer,
“Exploring the energy-time tradeoff in MPI programs on a power-
scalable cluster,” in Parallel and Distributed Processing Symposium,
2005. Proceedings. 19th IEEE International. IEEE, 2005, pp. 10–pp.

[24] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan, and
M. E. Papka, “Integrating dynamic pricing of electricity into energy
aware scheduling for HPC systems,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis. ACM, 2013, p. 60.

[25] T. Cao, Y. He, and M. Kondo, “Demand-aware power management for
power-constrained HPC systems,” in Cluster, Cloud and Grid Computing
(CCGrid), 2016 16th IEEE/ACM International Symposium on. IEEE,
2016, pp. 21–31.

[26] M. E. Haque, I. Goiri, R. Bianchini, and T. D. Nguyen, “Greenpar:
Scheduling parallel high performance applications in green datacenters,”
in Proceedings of the 29th ACM on International Conference on
Supercomputing. ACM, 2015, pp. 217–227.

[27] F. Yang and A. A. Chien, “Zccloud: Exploring wasted green power for
high-performance computing,” in Parallel and Distributed Processing
Symposium, 2016 IEEE International. IEEE, 2016, pp. 1051–1060.

[28] H. Chen, M. C. Caramanis, and A. K. Coskun, “Reducing the data center
electricity costs through participation in smart grid programs,” in Green
Computing Conference (IGCC), 2014 International. IEEE, 2014, pp.
1–10.

[29] A. Auweter, A. Bode, M. Brehm, L. Brochard, N. Hammer, H. Huber,
R. Panda, F. Thomas, and T. Wilde, “A case study of energy aware
scheduling on SuperMUC,” in International Supercomputing Conference.
Springer, 2014, pp. 394–409.

[30] B. Austin and N. J. Wright, “Measurement and interpretation of
microbenchmark and application energy use on the Cray XC30,” in
Proceedings of the 2nd International Workshop on Energy Efficient
Supercomputing. IEEE Press, 2014, pp. 51–59.

[31] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,
D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., “Quantum
espresso: a modular and open-source software project for quantum
simulations of materials,” Journal of physics: Condensed matter, vol. 21,
no. 39, p. 395502, 2009.

[32] V. Springel, “The cosmological simulation code gadget-2,” Monthly
notices of the royal astronomical society, vol. 364, no. 4, pp. 1105–1134,
2005.

[33] M. Käser, J. d. a. Puente, C. Castro, V. Hermann, and M. Dumbser,
“Seismic wave field modelling using high performance computing,”
in SEG Technical Program Expanded Abstracts 2008. Society of
Exploration Geophysicists, 2008, pp. 2884–2888.

[34] C. Feichtinger, S. Donath, H. Köstler, J. Götz, and U. Rüde, “Walberla:
HPC software design for computational engineering simulations,” Journal
of Computational Science, vol. 2, no. 2, pp. 105–112, 2011.

[35] J. D. McCalpin, “Stream benchmark,” URL: http://www. cs. virginia.
edu/stream/stream2, 2002.

[36] T. Patki, D. K. Lowenthal, B. L. Rountree, M. Schulz, and B. R.
d. Supinski, “Economic viability of hardware overprovisioning in power-
constrained high performance computing,” in 2016 4th International
Workshop on Energy Efficient Supercomputing (E2SC), Nov 2016, pp.
8–15.

[37] K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “The en-
ergy/frequency convexity rule: Modeling and experimental validation on
mobile devices,” in International Conference on Parallel Processing and
Applied Mathematics. Springer Berlin Heidelberg, 2013, pp. 793–803.

[38] M. J. Powell, “A fast algorithm for nonlinearly constrained optimization
calculations,” in Numerical analysis. Springer, 1978, pp. 144–157.

[39] Parallel Systems Lab, “Python scheduler simulator,” https://code.google.
com/archive/p/pyss/, 2010.

[40] Y. Georgiou, D. Glesser, K. Rzadca, and D. Trystram, “A scheduler-level
incentive mechanism for energy efficiency in HPC,” in Cluster, Cloud
and Grid Computing (CCGrid), 2015 15th IEEE/ACM International
Symposium on. IEEE, 2015, pp. 617–626.

[41] F. Liu and J. B. Weissman, “Elastic job bundling: An adaptive resource
request strategy for large-scale parallel applications,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2015, p. 33.

[42] “CQsim,” http://bluesky.cs.iit.edu/cqsim/, 2012.
[43] W. Tang, Z. Lan, N. Desai, and D. Buettner, “Fault-aware, utility-based

job scheduling on Blue Gene/P systems,” in 2009 IEEE International
Conference on Cluster Computing and Workshops, Aug 2009, pp. 1–10.

[44] W. Tang, D. Ren, Z. Lan, and N. Desai, “Adaptive metric-aware
job scheduling for production supercomputers,” in Parallel Processing
Workshops (ICPPW), 2012 41st International Conference on. IEEE,
2012, pp. 107–115.

[45] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar, D. A.
Evensky, and J. Mayo, “A simulator for large-scale parallel computer
architectures,” Technology Integration Advancements in Distributed
Systems and Computing, vol. 179, 2012.

[46] N. Jain, A. Bhatele, S. White, T. Gamblin, and L. V. Kale,
“Evaluating HPC networks via simulation of parallel workloads,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’16. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 14:1–14:12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3014904.3014923

[47] N. Santhi, S. Eidenzenz, and J. Liu, “The Simian concept: parallel
discrete event simulation with interpreted languages,” in Proceedings
of the 2015 Winter Simulation Conference, L. Yilmaz, W. K. V. Chan,
I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, Eds., 2015.

[48] G. Chapuis, S. Eidenbenz, N. Santhi, and E. J. Park, “Simian integrated
framework for parallel discrete event simulation on GPUs,” in 2015
Winter Simulation Conference (WSC), Dec 2015, pp. 1127–1138.

[49] G. Chapuis, D. Nicholaeff, S. Eidenbenz, and R. S. Pavel, “Predicting
performance of smoothed particle hydrodynamics codes at large scales,”
in Winter Simulation Conference (WSC), 2016. IEEE, 2016, pp. 1825–
1835.

[50] K. Ahmed, M. Obaida, J. Liu, S. Eidenbenz, N. Santhi, and G. Chapuis,
“An integrated interconnection network model for large-scale performance
prediction,” in Proceedings of the 2016 annual ACM Conference on
SIGSIM Principles of Advanced Discrete Simulation. ACM, 2016, pp.
177–187.

[51] K. Ahmed, J. Liu, S. Eidenbenz, and J. Zerr, “Scalable interconnection
network models for rapid performance prediction of HPC applications,”
in 2016 IEEE 18th International Conference on High Performance
Computing and Communications (HPCC), Dec 2016, pp. 1069–1078.

[52] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Charac-
terization of backfilling strategies for parallel job scheduling,” in Parallel
Processing Workshops, 2002. Proceedings. International Conference on.
IEEE, 2002, pp. 514–519.

[53] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using
the parallel workloads archive,” Journal of Parallel and Distributed
Computing, vol. 74, no. 10, pp. 2967 – 2982, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731514001154

[54] K. Deng, J. Song, K. Ren, and A. Iosup, “Exploring portfolio scheduling
for long-term execution of scientific workloads in IaaS clouds,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 55.

[55] K. Kianfar, G. Moslehi, and R. Yahyapour, “A novel metaheuristic
algorithm and utility function for qos based scheduling in user-centric
grid systems,” The Journal of Supercomputing, vol. 71, no. 3, pp. 1143–
1162, 2015.

[56] Arch Linux, “CPU frequency scaling,” https://wiki.archlinux.org/index.
php/CPU frequency scaling, 2017.

[57] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An approach to
performance prediction for parallel applications,” Euro-Par 2005 Parallel
Processing, pp. 627–628, 2005.

[58] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh,
and S. A. McKee, “Methods of inference and learning for performance
modeling of parallel applications,” in Proceedings of the 12th ACM
SIGPLAN symposium on Principles and practice of parallel programming.
ACM, 2007, pp. 249–258.

[59] R. Ge, X. Feng, and X. H. Sun, “SERA-IO: Integrating energy conscious-
ness into parallel i/o middleware,” in 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID 2012),
May 2012, pp. 204–211.

