
Distributed Mininet with Symbiosis
Rong Rong and Jason Liu

School of Computing and Information Sciences
Florida International University

Emails: {rrong001,liux}@cis.fiu.edu

Abstract—Mininet is a container-based emulation environment
that can study networks with virtual hosts and OpenFlow-
enabled virtual switches on Linux. However, it is well-known
that experiments using Mininet may lose fidelity for large-
scale networks and heavy traffic load. One solution is to use
a distributed setup where an experiment constitutes multiple
instances of Mininet running on a cluster, each handling a subset
of virtual hosts and switches. Such arrangement, however, is still
constrained by bandwidth and latency limitations in the physical
connection between the instances. In this paper, we propose
a novel method of integrating distributed Mininet instances
using a symbiotic approach, which extends an existing method
for combining real-time simulation and emulation. We use an
abstract network model to coordinate the distributed instances,
which are superimposed to represent the target network. In this
case, one can more effectively study the behavior of real imple-
mentation of network applications on large-scale networks, since
the interaction between the Mininet instances is only capturing
the effect of contentions among network flows in shared queues,
as opposed to having to exchange individual network packets,
which can be limited by bandwidth or sensitive to latency. We
provide a prototype implementation of the new approach and
present validation studies to show it can achieve accurate results.
We also present a case study that successfully replicates the
behavior of a denial-of-service (DoS) attack protocol.

Index Terms—Network emulation; distributed emulation; sym-
biotic simulation; hybrid network experiments

I. INTRODUCTION

Mininet [1], [2] is a popular container-based emulation
environment built for Linux for testing OpenFlow applica-
tions [3]. Mininet uses lightweight OS-level virtualization to
emulate the network hosts. Each virtual host corresponds to
a container attached to a separate Linux network namespace,
each containing a virtual network interface assigned with a
distinct IP address along with independent functions of the
TCP/IP stack (such as the kernel routing/forwarding table).
The virtual network interfaces of the hosts are connected
via virtual Ethernet links to one or multiple instances of
the Open vSwitch (OVS) [4], which is a production-quality
software switch augmented with OpenFlow capabilities to
support experiments of OpenFlow applications.

Using Mininet, one can create network experiments using a
set of interconnected virtual hosts and virtual switches as an
arbitrary network. Real applications can run directly in virtual
hosts. Mininet provides performance limiting and isolation
features, using existing Linux tools, such as cgroups for
scheduling and CPU resource management, and tc to control
the network link properties. Each virtual host in Mininet can
be configured to take only a fraction of the overall system

CPU resources. Each network link can also be configured
with specific bandwidth, latency, and packet loss probability.
For OpenFlow experiments, one can connect an OpenFlow
controller with the OVS software switches for a full-fledged
software-defined network implementation.

A significant portion of the Mininet’s implementation is a
python library with a straightforward application programming
interface (API) and a command-line interface (CLI) to assist
the users to easily create and run tests. The API allows the
users to create arbitrary custom network topologies. The CLI
allows the users to interactively run and control applications
on designated virtual hosts during the experiment. As such,
Mininet has become a simple and inexpensive network testbed
for developing, testing, and debugging network applications,
especially OpenFlow applications, without the need to set up a
physical network. For example, for five years in a row, students
in Stanford’s advanced networking topics course have used
Mininet to reproduce results from research papers (either on
stand-alone hosts or on Amazon EC2) [5].

Although used popularly in network experiments, Mininet
has important limitations. Mininet is an emulation system, and
as such it operates in real time. For network-limited experi-
ments, one may have to configure a network with links of
smaller bandwidth. Packet forwarding on the virtual network
share CPU and memory resources. The aggregate capacity of-
fered by Mininet is typically around a few gigabits depending
on the physical machine. For CPU-limited experiments, one
would also need to carefully allocate the CPU resources to the
virtual hosts. When the size of the target network increases, the
CPU resources assigned to each application running a virtual
host may become severely under-provisioned and therefore
affect the timing accuracy of the experiments.

The performance of Mininet can be unreliable for large
networks with heavy traffic load. To allow large-network
experiments, MaxiNet extends the container-based emulation
approach to run Mininet distributedly in a cluster environ-
ment [6]. MaxiNet has a front-end which can control a pool of
physical machines, called workers. MaxiNet provides an API
for creating the target network, which will be partitioned using
spatial decomposition to run on the workers. Each worker
runs a separate Mininet instance that only emulates a part
of the entire network. At the front end, MaxiNet runs a built-
in command-line interface (CLI). Like the traditional Mininet,
the CLI allows the users interactively run arbitrary commands
on any virtual host. It also supports X forwarding, through
which one use graphical user interfaces on both the workers

and the virtual hosts.
For network links connecting switches and hosts assigned

to different workers are implemented using GRE tunnels1.
All packets generated by applications traversing these links
must be forwarded across the GRE tunnels accordingly. The
bandwidth and latency of the links between the workers
therefore depend on the physical network connection, which
can be severely limited.

In this paper, we propose an alternative method of de-
composing large-scale network experiments among distributed
Mininet instances. Our approach extends symbiotic simulation,
previously proposed by Erazo et al. [7], which integrates real-
time simulation and emulation. A target network in symbiotic
simulation consists of a simulation system and an emulation
system. Simulation represents the entire network of inter-
connected hosts and routers/switches. The user can select a
subset of the hosts to be emulated on virtual machines, on
which real implementation of network applications can run.
The simulation and emulation systems are synchronized in
real time. Emulation provides simulation with flow informa-
tion of traffic generated by the applications running on the
virtual hosts. Simulation provides emulation with periodic
updates at the network queues traversed by real application
traffic. The emulation system uses the information to calibrate
communication (throughput, delay, and packet loss) between
the real application instances. The approach minimizes the
exchange of information between the simulation and emulation
systems, and in doing so allows us to study the behavior of real
applications running in diverse simulated network scenarios.

We extends symbiotic simulation and uses a succinct sim-
ulation model to coordinate different Mininet instances on a
pool of workers, each representing a set of applications ex-
changing traffic. In its simplest form, the application traffic is
contained and isolated in the corresponding Mininet instances
and no packet forwarded is needed between the workers.
Only synchronization messages (traffic demand and queuing
updates) are exchanged periodically (at relatively large time
intervals) between the Mininet instances on the workers and
the succinct simulation model potentially running on the front-
end machine. As such, we can minimize the traffic load over
the physical network connecting the distributed machines.
Consequently, our approach has the potential to significantly
increase the size of the network under study or the traffic load
supported by emulation. Our approach can also be combined
with the traditional spatial decomposition method used in
MaxiNet, where application traffic may span over separate
Mininet instances.

We implemented a prototype of the symbiotic approach
supporting distributed Mininet. We conducted validation ex-
periments, which show that our approach can generate accu-
rate results. To demonstrate the capability of our distributed
emulation approach, we chose to study a particular denial-

1Generic Routing Encapsulation (GRE) is a protocol that creates a virtual
tunnel between two end points where packets of different network-layer
protocols can be encapsulated and sent over an IP network.

of-service scenario for real TCP protocols, which cannot be
realized using the single-machine Mininet.

II. RELATED WORK

There exist several approaches for conducting network
experiments in general, and for developing, testing, and de-
bugging OpenFlow applications in particular.

One approach is to use physical testbeds, where one can
directly conduct network experiments using physical machines
connected with (OpenFlow) switches. One can also use NetF-
PGA or network processors to implement new OpenFlow
functions. An example of physical testbed is GENI [8], which
provides access to hundreds of widely distributed resources
(including compute nodes, switches, links, WiMax base sta-
tions), for which researchers can obtain exclusive access to a
slice of the resources and program for experimentation. Both
CloudLab [9] and Chameleon [10] take a similar approach,
except using resources from a cluster environment. One im-
portant drawback of physical testbeds is that resources are
expensive to come by and can be cumbersome to operate,
especially for large-scale network experiments.

Simulation (e.g., [11]–[13]) is another approach. Simulation
provides high fidelity as it can achieve good timing accuracy
through the use of virtual time. Simulation can also be
parallelized to run on parallel platforms and model large-scale
networks (e.g., [14]–[16]). There exist two major drawbacks,
however, in using network simulation. One drawback is that
developing simulation models would require significant effort.
A case in point is the OpenFlow implementation in the
ns-3 simulator. For a long time, ns-3 has only one Open-
Flow module [17] that implements an outdated OpenFlow
protocol version 0.8.9. This module relies on an externally
linked OpenFlow switch library that basically lacks all the
advanced features of later OpenFlow versions. Until recently,
a new module was introduced to support OpenFlow protocol
version 1.3 [18]. This module also relies on an externally
linked OpenFlow 1.3 software switch library derived from
the CPqD OpenFlow 1.3 Software Switch implementation.
Unfortunately, the implementation is still lagging behind the
current OpenFlow development. The same argument can be
applied to developing models for network applications. The
other drawback for using network simulation is related to
validation, which would also require extensive efforts. These
costs make simulation studies less attractive in many cases. As
a result, we see only a few research projects that extensively
use detailed network simulation for performance studies.

Emulation provides a good alternative to simulation. Em-
ulation operates in real time and supports “traffic shaping”
by introducing artificial delays and packet losses (e.g. [19]).
Mininet is a container-based emulation testbed, where one
can create network experiments using a set of virtual hosts
(Linux namespaces) and virtual switches (OVS instances)
connected as an arbitrary network. OVS is an OpenFlow-
enabled software switch that has the capabilities of running
SDN applications. Container-based emulators offer functional
fidelity, but often introduce significant temporal errors when

2

the resource demand goes beyond its physical capacity [20].
To improve emulation scalability and fidelity, one method is
to introduce virtual time. One such method is to use time
dilation, which controls how system time progresses [21]. By
increasing the interval between timer interrupts by a given
factor, the system clock will be slowed down accordingly. As
a result, applications running in the system would experience
a slower passage of time and consequently observe an upgrade
in the system resources. Such technique has been integrated
in several emulators [22]–[24]. Another approach is to modify
the virtual machine scheduling mechanism so that the system
time of the VMs advances according to virtual time (e.g., [25]–
[27]). For example, TimeKeeper [27] applies kernel modifica-
tion of time-related system calls in Linux to for a lightweight
virtual time system. The technique has been applied to build a
virtual-time Mininet, called VT-Mininet, for improving emula-
tion timing accuracy [20]. To overcome the capacity constraint,
another method is to use distributed emulation that extends the
container-based emulators to run on a cluster [6], [28]. Our
approach complements the existing distributed approach by
providing a novel method for partitioning the potentially large-
scale network and synchronizing separate emulation instances
without excessive communication overhead.

It is oftentimes advantageous to combine simulation and
emulation. One method is direct-execution simulation, which
directly incorporates protocol implementations in simulation
(e.g., [29]–[31]). Another method is real-time simulation,
which performs simulation in real time so that the virtual
network can interact with real applications by exchanging
network packets (e.g., [32]–[34]). The third method is sym-
biotic simulation, where the interplay between simulation and
emulation underlines a mutually beneficial relationship by the
exchange of information for synchronizing the state of the
two systems (e.g. [7], [35]). Symbiotic simulation provides
an interesting combination of emulation, which provides a
realistic execution environment for applications, and simula-
tion, which provides flexible, large-scale network scenarios.
Our approach extends symbiotic simulation in that we use
a (scaled-down) simulator to coordinate multiple emulation
instances in a distributed environment. Our previous work
integrates a Mininet instance with a simulation instance using
the symbiotic approach [36]. In this paper, we propose to use
a succinct simulation model to coordinate distributed Mininet
instances with reduced communication overhead. In doing so,
our work will allow for large-scale SDN experimentation on
parallel platforms.

III. MININET SYMBIOSIS

We use an example to illustrate the design of Mininet
symbiosis for distributed emulation, shown in Fig. 1. The
network consists of six hosts, H1 to H6, and sixteen routers.
During the experiment, there will be three significant flows:
from H1 to H2, from H3 to H4, and from H5 to H6. We
consider flows as significant if they may cause congestions
in the network paths, such as large file transfers from one
host to another. For simplicity, we consider these flows as

H3

H2H5

H6

H1

H4

R1

R2
R3

R4

R5 R6

R7 R8

R9 R10

R11

R12

R13

R14

R15

R16

Fig. 1. An emulated network with three traffic flows.

one-directional flows2. Our current scheme requires that these
three flows have to be specified as part of the experiment
configuration. As long as there is a possibility that a significant
flow will be created from one host to another during the
experiment, we need to include it in the configuration.

The network configuration with the specified flows is then
processed to derive a downscaled simulation model. We first
partition the virtual network (more specifically, the flows on
the network) among the emulation instances. The idea is to
keep large flows on the same emulation instances, as opposed
to separating them to span across different machines to avoid
potential cross-machine traffic. In our example, we assigned
each of the three flows to a separate Mininet instance.

Once we partition the network, we identify network links
with multiple flows belonging to different emulation instances.
We create a queue that corresponds to each of these links. We
call such queues as “network pipes”; the network model will
use them to handle situations where congestion may occur due
to interaction of flows from different emulation instances. In
our example, there are two network pipes: one from R5 to R6

(q1), and the other from R9 to R10 (q2). Note that if a flow is
bi-directional, we would need to create two network pipes for
each link, one for each direction.

We create the downscaled simulation model by attaching
the simulated hosts to the network pipes with proper delays
and bandwidths. Fig. 2 shows the downscaled model of our
example (in the middle), in which we have six simulated hosts,
h1 to h6, that correspond to the emulated hosts, H1 to H6. The
bandwidth of the link between a host and a network pipe is
the minimum bandwidth of all links in the original emulated
network, and its delay is the sum of the delays. For example,
the link from h1 to q1 has the bandwidth set to be minimum
between the bandwidth of the link H1 to R1, and the bandwidth
of the link R1 to R6; it has the delay set to be the sum of
the link delay from H1 to R1 and the link delay from R1 to
R6. We start the “simulation controller” to run the simulation
model (discussed momentarily), and create a TCP server that
accepts connections from the distributed Mininet instances to
exchange information periodically. As it has been shown that
a relatively large synchronization interval, ∆T , can be used
without significantly comprising the accuracy of the symbiotic
approach [7], we choose one second in our experiments.

We create the distributed Mininet instances, one on each

2Note that our method does not preclude bi-directional flows, in which
case we simply need to add separate queues to represent potential congestion
points in the downscaled simulation model.

3

q1 q2

H2H1

R1 R5 R6 R9 R10

H3 H4
R2

R3

R12

R6

R5

R11

H5

H6

R7 R8

R9 R10

R13

R14

R15

R16

s(q2)

s(q2)s(q1)

s(q1)

g(H1)

g(H3) g(H5)

h1 h2

h3 h4

h5

h6

Mininet#2

Mininet#3

Mininet#1

Simulation
Controller

Fig. 2. An abstract simulation model coordinates three Mininet instances.

physical machine. A emulation model consists of a number of
virtual hosts (as containers) and switches (as OVS instances).
Each Mininet instance connects to the simulation controller as
a TCP client to exchange information during the experiment.
For each virtual host designated as the source of a significant
flow (such as H3 in Mininet instance #2), we install a “traffic
monitor”, which periodically collects the traffic demands of the
applications running on the virtual host. The traffic demand
is represented as g(H3) in our example; it is sent to the
simulation controller.

The simulation controller receives the traffic demand from
the Mininet instances, in terms of the number of bytes re-
quested to be sent from Hi to Hj. Upon receiving this infor-
mation, the simulator simulates a flow with the corresponding
demand. If using a packet-oriented simulator, as what we have
in our prototype, we initiate a TCP or UDP session between
the two simulated hosts and send the desired amount of data.
An alternative is to use a fluid traffic model (e.g., [37]) where
one can simply modify the send rate in the equation of the
corresponding flows.

The simulation controller also collects the state information
s(qi) at each network pipe qi, which includes the measured
packet drop probability pi, the queuing delay wi, and the
arrival rate of the traffic flows λki for all flows k travers-
ing the network pipe qi. These measurements are collected
periodically by the simulator and sent to all Mininet instances
that have the corresponding network links.

In each Mininet instance, we also install a “traffic con-
troller” module. The link corresponding to a network pipe is
implemented as a virtual Ethernet (veth) pair. The traffic
controller “shapes” the traffic going through the network link.
More specifically, upon receiving the state information s(qi)
for the network pipe qi, the traffic controller can calculate the
bandwidth of the corresponding link as follows (see [7] for
derivation in a similar case for symbiotic simulation):

µi =
λi(∆T + ŵi − wi)

∆T
(

1 + wiλi −
√

1 + w2
i λ

2
i

)
where λi is the sum of λki for all flows k belonging to
this Mininet instance, and ŵi is the average packet queuing
delay of the network link measured in emulation. The traffic

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40

Time (seconds)

Distributed Mininet

flow 1
flow 2
flow 3

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40

Time (seconds)

Simulation

flow 1
flow 2
flow 3

Fig. 3. Comparing TCP throughput (in Mb/s) of the three flows from
distributed Mininet vs. simulation.

controller sets the packet loss pi and bandwidth µi of the
network link using the Linux traffic control utility, tc.

IV. VALIDATION EXPERIMENTS

We created a prototype implementation of our distributed
Mininet with symbiosis. We conducted experiments and com-
pared the results with those obtained from simulation to
validate our approach. We used the machines at CloudLab [9]
for all our experiments. Each of these machines is equipped
with two eight-core Intel Xeon E5-2450 2.1 GHz processors
and 16 GB memory; they are connected by 10 Gbps Ethernet.
We ran the simulation controller and the Mininet instances on
separate machines.

We started with a simple dumbbell model to demonstrate
that our symbiotic approach can capture complex network
dynamics in real time. The model consists of two routers con-
necting six hosts (three on either side). We set the bandwidth
of the “bottleneck” link between the two routers to be 10 Mb/s,
and the link delay is 15 milliseconds. Each router is connected
with three hosts via separate “spoke” links. The bandwidth
of the spoke link is 1 Gb/s and the delay is 1 ms. In the
experiment, we directed three TCP flows with iperf (using
TCP Reno), one from each host on one side of the dumbbell
to a different host on the other side. The first flow was a
long-lived flow starting from the beginning of the experiment.
The second flow started from 10 seconds and lasted for 8
seconds. The third flow started from 14 seconds and ended at
35 seconds. For distributed emulation, we instantiated three
Mininet instances, one for each flow. For comparison, we
created the same scenario in simulation. Fig. 3 shows that the
throughput from distributed emulation (reported by iperf)
match well with the simulation output.

In the second experiment, we created a more complicated
scenario where flows may interact at multiple locations. The
model, shown in Fig. 4, consists of 16 hosts connected by 6
routers organized as a ring. The links connecting the routers
have 100 Mb/s bandwidth and 5 milliseconds delay. The links
connecting the hosts have 1 Gb/s bandwidth and 1 millisecond
delay. We created eight flows during the experiment with dif-
ferent arrive time and duration. Flows 3 and 4 have a random
start time. To make it more interesting, we designated flow 0 to
be a simulated flow (generated only in simulation controller)
with five parallel TCP sessions. The rest of the flows were
handled by seven Mininet instances, one for each flow. We

4

Flow 0

Flow 1

Flow 2

Flow 3

Flow 4

Flow 5

Flow 6

Flow 7

Fig. 4. The ring model.

TABLE I
SEVEN EMULATED FLOWS IN THE RING MODEL

start end emulation simulation
flow time time throughput throughput error

1 0 20 56.8 56.8 0.0%
2 5 25 51.2 50.7 1.0%
3 0∼10 20∼30 95.3 92.0 3.6%
4 0∼10 20∼30 94.3 91.6 2.9%
5 5 20 48.5 51.1 5.1%
6 20 30 55.3 55.2 0.2%
7 0 25 51.8 51.7 0.2%

compare the results with those obtained from simulation (see
table I). The error never exceeds 5.1%.

V. A CASE STUDY

Denial of service (DoS) attacks prevents the target computer
from responding quickly to its legitimate users’ traffic, or not
at all. Shrew is a specific attack pattern where the attacher
sends bursts of data at a regular interval to an over-committed
bottleneck link [38]. When the attack bursts occur at intervals
that synchronize with the minimum retransmission timeout
(RTO) of legitimate TCP connections sharing the bottleneck
link, they can trigger TCP timeouts and consequently strangle
the throughput of those connections. Since the average traffic
rate of a shrew attack is low, it can be difficult to be detected.
In this section, we use the Shrew attack as a real life example.

To establish the baseline, we start with the same experiment
setup with a simple topology as in [38]. There is one pair of
good sender and receiver (the victim flow) and another pair of
bad sender and receiver (the attack flow); they share the same
bottleneck link. The good pair are separated by two routers,
and the bad pair by three routers. The shared bottleneck link
has 10 Mb/s bandwidth and 20 ms delay. All the other links
have 100 Mb/s bandwidth and 2 ms delay. We ran one Mininet
instance to emulate the good data transfer (using iperf) and
simulate the attack flow using UDP. We set the burst rate to
be 10 Mb/s and the length of each burst to be 100 ms. We ran
experiments with different inter-burst period (the time between
consecutive bursts) from 0.9 to 5 seconds.

The results are shown in Fig. 5. The y-axis is the normalized
throughput, which is the throughput of the victim flow divided
by the bandwidth of the bottleneck link. Our results, marked
as “TCP Reno (Emulation)”, are comparable with “TCP Reno
(Simulation)”, the results reported in the original paper [38].
We also tried other TCP versions (Vegas and BIC are shown
in the plot); we got similar results. As expected, we see that
the Shrew attack can significantly lower the throughput of
the victim flow (in this case when the inter-burst period is
at around 1 second).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Inter-Burst Period (seconds)

TCP Reno (Simulation)
TCP Reno (Emulation)
TCP Vegas (Emulation)
TCP BIC (Emulation)

Fig. 5. The effect of the Shrew attack.

 0

 0.2

 0.4

 0.6

 0.8

 1

sequential/normal

sequential/dos

distributed/normal

distributed/dos

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

RTT=40ms
RTT=120ms
RTT=200ms
RTT=280ms
RTT=360ms

Fig. 6. Sequential vs. distributed Mininet runs.

We conducted another experiment to study the effect of the
Shrew attack against a group of victim TCP flow with different
RTTs. We used the dumbbell topology, where we have five
pairs of good senders and receivers and one pair of bad sender
and receiver. We set the bandwidth of the bottleneck link to be
100 Mb/s and the other links to be 1 Gb/s. We set the victim
flows to have different round-trip times (RTTs): 40, 80, 160,
280 and 360 ms. The attack flow has an RTT of 440 ms. The
attack flow has the same burst and length as in the previous
example. We fix the inter-burst period to be 1.0003 seconds.

We use distributed emulation with six Mininet instances,
one for each flow. We compare the results obtained from the
distributed Mininet with those from running a single Mininet
instance. In Fig. 6, one can see that running a single Mininet
instance, the Shrew DoS attack basically has no effect on the
throughput of the flows. In fact, it generates incorrect results:
the flow with the smallest RTT got the whole share of the
throughput. Using our distributed Mininet, we observe that not
only the aggregate throughput is reduced by the DoS attack,
but also the flows react differently: the throughput degrades
more significantly for flows with higher RTTs.

VI. CONCLUSIONS

We present a distributed emulation method using a sym-
biotic approach, which has been used early to combine real-
time simulation and emulation. In our approach, the simulator
acts as a coordinator for the distributed emulation instances
by capturing the effect of contention among the network
flows potentially belonging to different distributed instances.
Our approach provides a novel method for partitioning the
virtual network among the emulation instances and can be
used in accordance with the traditional spatial decomposition
method. Through experiments using a distributed Mininet

5

implementation, we show that the symbiotic approach can
generate accurate results, and it can be readily used in studies
involving high traffic load scenarios.

For future work, we would like to first integrate our sym-
biotic approach with the traditional spatial decomposition.
In this case, a robust partitioning algorithm is needed to
be able to handle different scenarios. Second, our current
method requires that significant flows be identified during
experiment configuration. This can be an unnecessary burden
if the system can dynamically identify these flows and create
network pipes on demand. Third, our current design has but
one centralized simulation controller. A distributed approach
is needed to avoid the potential bottleneck for a large number
of emulation instances. Last, we would like to explore other
more efficient simulation abstractions (such as fluid models)
which can further reduce the cost of the controller.

ACKNOWLEDGMENT

This research is supported in part by the NSF grant
CNS-1563883, the DOD grant W911NF-13-1-0157, the DOE
LANL/LDRD Program, and a USF/FC2 SEED grant.

REFERENCES

[1] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM Workshop on Hot Topics in Networks, 2010, pp. 19:1–19:6.

[2] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
CoNEXT, pp. 253–264, 2012.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[4] “Open vSwitch,” http://openvswitch.org/.
[5] “Reproducing network research: network systems ex-

periments made accessible, runnable, and reproducible,”
https://reproducingnetworkresearch.wordpress.com/.

[6] P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M. Zahraee, and
H. Karl, “Maxinet: Distributed emulation of software-defined networks,”
in Proceedings of the 2014 IFIP Networking Conference, 2014, pp. 1–9.

[7] M. A. Erazo, R. Rong, and J. Liu, “Symbiotic network simulation and
emulation,” ACM Trans. Model. Comput. Simul., vol. 26, no. 1, pp. 2:1–
2:25, 2015.

[8] GENI Project Office, “The Global Environment for Network Innovations
(GENI),” http://www.geni.net.

[9] CloudLab, https://www.cloudlab.us/.
[10] Chameleon - A configurable experimental environment for large-scale

cloud research, https://www.chameleoncloud.org/.
[11] NS-3 Project, “ns-3,” http://www.nsnam.org/index.html.
[12] http://www.opnet.org.
[13] András Varga, “OMNeT++ Network Simulation Framework,” http://

www.omnetpp.org/.
[14] D. M. Nicol, J. Liu, M. Liljenstam, and G. Yan, “Simulation of large-

scale networks using SSF,” in Proceedings of the Winter simulation
Conference, 2003, pp. 650–657.

[15] G. F. Riley, “The georgia tech network simulator,” in Proceedings of
the ACM SIGCOMM Workshop on Models, Methods and Tools for
Reproducible Network Research (MoMeTools), 2003, pp. 5–12.

[16] C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: a high-performance,
low memory, modular time warp system,” in Proc. of 14th Workshop on
Parallel and Distributed Simulation (PADS), 2000, pp. 53–60.

[17] B. Hurd, “GSoC 2010 OpenFlow,” https://www.nsnam.org/wiki/
GSOC2010OpenFlow.

[18] L. J. Chaves, I. C. Garcia, and E. R. M. Madeira, “Ofswitch13:
Enhancing ns-3 with openflow 1.3 support,” in Proceedings of the
Workshop on Ns-3 (WNS3’16), 2016, pp. 33–40.

[19] L. Rizzo, “Dummynet: a simple approach to the evaulation of network
protocols,” ACM SIGCOMM Computer Communication Review, vol. 27,
no. 1, pp. 31–41, 1997.

[20] J. Yan and D. Jin, “Vt-mininet: Virtual-time-enabled mininet for scalable
and accurate software-define network emulation,” in Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research (SOSR’15), 2015, pp. 27:1–27:7.

[21] D. Gupta, K. Yocum, M. McNett, A. Snoeren, A. Vahdat, and G. Voelker,
“To infinity and beyond: time-warped network emulation,” in Proceed-
ings of the 3rd USENIX Symposium on Networked Systems Design and
Implementation (NSDI’06), 2006.

[22] D. Gupta, K. V. Vishwanath, M. McNett, A. Vahdat, K. Yocum,
A. Snoeren, and G. M. Voelker, “Diecast: Testing distributed systems
with an accurate scale model,” ACM Trans. Comput. Syst., vol. 29, no. 2,
pp. 4:1–4:48, 2011.

[23] M. A. Erazo, Y. Li, and J. Liu, “SVEET! a scalable virtualized evaluation
environment for TCP,” in Proceedings of the 5th International Confer-
ence on Testbeds and Research Infrastructures for the Development of
Networks & Communities and Workshops (TRIDENTCOM’09), 2009,
pp. 1–10.

[24] A. Grau, S. Maier, K. Herrmann, and K. Rothermel, “Time jails: A
hybrid approach to scalable network emulation,” in Proceedings of the
22nd Workshop on Principles of Advanced and Distributed Simulation
(PADS’08), 2008, pp. 7–14.

[25] D. M. Nicol, D. Jin, and Y. Zheng, “S3F: the scalable simulation frame-
work revisited,” in Proceedings of the Winter Simulation Conference,
2011, pp. 3288–3299.

[26] E. Weingärtner, F. Schmidt, H. V. Lehn, T. Heer, and K. Wehrle,
“Slicetime: A platform for scalable and accurate network emulation,”
in Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation (NSDI’11), 2011, pp. 253–266.

[27] J. Lamps, D. M. Nicol, and M. Caesar, “Timekeeper: A lightweight
virtual time system for linux,” in Proceedings of the 2nd ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation (SIGSIM-
PADS’14), 2014, pp. 179–186.

[28] A. R. Roy, M. F. Bari, M. F. Zhani, R. Ahmed, and R. Boutaba, “Dot:
Distributed openflow testbed,” in Proceedings of the 2014 SIGCOMM
Conference, 2014, pp. 367–368.

[29] X. Liu, H. Xia, and A. A. Chien, “Validating and scaling the microgrid:
A scientific instrument for grid dynamics,” J. Grid Comput., vol. 2, no. 2,
pp. 141–161, 2004.

[30] J. Liu, Y. Yuan, D. M. Nicol, R. S. Gray, C. C. Newport, D. Kotz, and
L. F. Perrone, “Empirical validation of wireless models in simulations
of ad hoc routing protocols,” SIMULATION, vol. 81, no. 4, pp. 307–323,
2005.

[31] H. Tazaki, F. Uarbani, E. Mancini, M. Lacage, D. Camara, T. Turletti,
and W. Dabbous, “Direct code execution: Revisiting library OS archi-
tecture for reproducible network experiments,” CoNEXT, pp. 217–228,
2013.

[32] K. Fall, “Network emulation in the Vint/NS simulator,” in Proceedings of
the 4th IEEE Symposium on Computers and Communications (ISCC’99),
1999, pp. 244–250.

[33] J. Ahrenholz, C. Danilov, T. Henderson, and J. Kim, “Core: A real-time
network emulator,” in Proceedings of the IEEE Military Communications
Conference (MILCOM), 2008, pp. 1–7.

[34] J. Liu, Y. Li, N. V. Vorst, S. Mann, and K. Hellman, “A real-time network
simulation infrastructure based on OpenVPN,” Journal of Systems and
Software, vol. 82, no. 3, pp. 473–485, 2009.

[35] Y. Gu and R. Fujimoto, “Performance evaluation of the rosenet network
emulation system,” SIMULATION, vol. 85, no. 5, pp. 319–333, 2009.

[36] J. Liu, C. Marcondes, M. Ahmed, and R. Rong, “Toward scalable
emulation of future internet applications with simulation symbiosis,”
in Proceedings of the 19th IEEE/ACM International Symposium on
Distributed Simulation and Real Time Applications (DS-RT’15), 2015,
pp. 68–77.

[37] Y. Liu, F. L. Presti, V. Misra, D. F. Towsley, and Y. Gu, “Scalable fluid
models and simulations for large-scale ip networks,” ACM Transactions
on Modeling and Computer Simulation (TOMACS), vol. 14, no. 3, pp.
305–324, 2004.

[38] A. Kuzmanovic and E. W. Knightly, “Low-rate tcp-targeted denial of
service attacks: The shrew vs. the mice and elephants,” in Proceedings
of the 2003 SIGCOMs Conference, 2003, pp. 75–86.

6

