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Abstract—Learners participating in Massive Open Online 
Courses (MOOC) have a wide range of backgrounds and 
motivations. Many MOOC learners sign up the courses to take 
a brief look; only a few go through the entire content, and even 
fewer are able to eventually obtain a certificate. We discovered 
this phenomenon after having examined 76 courses on the 
xuetangX platform. More specifically, we found that in many 
courses the learning coverage—one of the metrics used to 
estimate the learners’ active engagement with the online 
courses—observes a Zipf distribution. We apply the maximum 
likelihood estimation method to fit the Zipf’s law and test our 
hypothesis using a chi-square test. The result from our study is 
expected to bring insight to the unique learning behavior on 
MOOC and thus help improve the effectiveness of MOOC 
learning platforms and the design of courses. 
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I.  INTRODUCTION 
The Massive Open Online Courses, or MOOC, have 

gained tremendous popularity since 2008 [1]. Besides the 
three pioneer platforms (Coursera, edX, and Udacity) [2], 
many other platforms have also been developed around the 
world, such as Khan Academy in North America, Miriada 
and Spanish MOOC in Spain, Iversity in German, 
FutureLearn in England, Open2Study in Australia, Fun in 
France, Veduca in Brazil, Schoo in Japan, and xuetangX in 
China [3]. Various universities, including many prestigious 
ones, nowadays develop and offer MOOC on these platforms. 
In doing so, MOOC has transformed education beyond the 
boundary of university campuses. 

MOOC has also brought unparalleled opportunities for 
studying learning behavior. Online learning platforms 
maintain a rich record on the student population: the 
demographics, enrollment history, as well as online activities 
when interacting with the learning platforms. The latter 
includes browsing behavior, click stream, downloads, video 
streaming, and so on. Being able to access this data, albeit 
sanitized and anonymized, provides us the opportunity to 

analyze learning behavior at an unprecedented scale and 
detail. 

Many researchers have taken interest in studying the 
learning behavior of MOOC participants. One of the most 
highlighted issues is how to measure the effectiveness of 
MOOC in general, given that the student completion rate 
(the proportion of students obtaining MOOC certificates) is 
substantially less than traditional online education courses 
[4]. The release of data points out a very low certification 
rate with an average less 15%. This problem has generated 
quite significant research efforts in studying the cause of low 
certification rate and thereby providing suggestion to 
improvement strategies (e.g., [5], [6]). MOOC has a large 
and diverse learner body with different intentions and 
motivations [7]. Many students engage with the courses and 
yet choose not to complete the assessments for credits. 
Consequently, the certification rate cannot be used as a 
reliable indicator for MOOC [8].  

Another highlighted issue in studying the learning 
behavior is on the difference in the engagement patterns of 
learners as they interact with the learning platforms. Many 
researchers use the data collected by the MOOC platforms to 
define and extract prominent features to describe different 
learning behaviors and use them to identify different 
engagement patterns (e.g., [9]–[12]). The focus there is to 
classify learners into different categories by the engagement 
patterns and analyze their relationship with performance 
attributes, student demographics, social activities, and so on.  

In this paper, we focus on the distribution of learning 
coverage. We define learning coverage as the amount of 
course materials accessed by the students. We found that the 
statistical distribution of learning coverage has an explicit 
long-tail feature. In particular, we found that, like many 
types of natural and man-made events, the learning coverage 
in MOOC observes the Zipf’s law and can thus be 
approximated with a Zipf distribution. 

In our study, we analyzed a dataset provided by 
xuetangX platform, containing over 40 million entries of 
event logs. The courses cover a wide range of disciplines, 



 
Figure 1. The distribution of course participants. 

 
Figure 2. Courses across disciplines. 

including mathematics, computer science, engineering, 
physics, chemistry, philosophy, history, business and so on. 
The results show that in over half of the courses the students’ 
learning coverage on MOOC follows a Zipf distribution with 
only slight differences between the courses (in the exponent 
parameter), which we believe can be attributed to the 
inherent features of specific courses, such as their level of 
difficulty and popularity. 

Our study is a first of its kind in that we explore and 
derive the statistical distribution of students’ learning 
behavior by analyzing large datasets from MOOC with 
detailed event logs capturing the users’ interaction with the 
online learning platforms. Our study is the first to show the 
existence of a Zipf distribution in the student engagement 
patterns. Our study can bring further insight of the unique 
learning behaviors of MOOC and thus can help both MOOC 
developers and course providers improve the effectiveness of 
the learning platforms and the design of the courses. 

II. RELATED WORK 

A. MOOC Learning Behavior 
Multidimensional data composed of user profiles and 

learning activities has been made available for researchers in 
education and data science. There have been studies 
attempting to establish relationships between students’ 
background, motivation, and performance (e.g., [13], [14]). 
Many researchers classify students and activities according 
to the level of engagement with the online courses. For 
example, Perna et al. [15] define “starters” as those who 
register for a course no later than one week after its start date. 
Ho et al. [16] divide students into three types: “registrant” as 
any registered user in a course, “participant” as a registrant 
who has accessed the content of a course, and “explorer” as a 
participant who has accessed more than half of a course’s 
content. Anderson et al. [11] classify users into five 
categories based on their accomplishment in the assignments: 
“viewers”, “all-rounders”, “solvers”, “collectors” and 
“bystanders”. Here, the collectors refer to those who 
primarily download lectures, while the bystanders refer to 
those with very low level of activities. Similarly, Kizilcec, 
Piech, and Schneider [9] define four types of learning 
patterns: “on track”, “auditing”, “behind”, and “out”. Evan et 
al. [12] define three types of activities: “engagement” refers 
to any activity such as downloading materials or watching 
lecture; “persistence” refers to engagement for a prolonged 

duration; and “completion” refers to persistence to the end of 
the course. Our study is also focused on student engagement. 
Our definition of learning coverage is a quantitative measure 
of student engagement in a particular course. We discuss 
learning coverage in detail in section IV-A. 

B. Zipf’s Law 
Zipf’s law builds on a fundamental premise that the 

occurrences of many types of natural and man-made events 
can be approximated with a Zipf distribution. Initially, Zipf’s 
law was applied in the context of language studies. It states 
that given some corpus of natural language utterances, the 
frequency of any word is inversely proportional to its rank in 
the frequency table [17]. Thereafter, Zipf’s law has been 
proven applicable to similar phenomena in various areas, 
such as population in cities, visits to websites, company size, 
science article citations, as well as natural and physical 
phenomena [18]. 

A Zipf distribution can be defined as (r) Crf D� , where 
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 ¦ , and D  is the exponent parameter with a 

positive value. In the classic version of a Zipf distribution, 
the exponent D  is 1. If we plot the Zipf distribution, 
frequency versus rank, in log-log scale, the result is a line 
and the slope of the line is D� . Because of this, most of the 
authors that claim the Zipf’s law patterns (e.g., [18]–[23]) 
use linear regression to examine the linearity between 
log(frequency) and log(rank). The better the linearity is, the 
closer it is to a Zipf distribution.  

This procedure, however, considers the intercept as a 
nuisance parameter, omitting the fact that it is related to D . 
More precisely, the intercept should be equal to log(C) . 
Moreover, linear regression through ordinary least squares is 
inefficient in this case, given that r  is an integer [24]. A 
better method to fit the Zipf’s law for empirical data is to use 
the maximum likelihood estimation (MLE), which has been 
proven effective in practice for similar distributions, such as 
Zipf-Mandelbrot law [25] and power law [26]. In our study, 
we also use MLE to estimate the exponent parameter in the 
Zipf distribution and check the goodness of fit by performing  

III. DATASET 
In this study, we use a dataset provided by xuetangX 

(http: //www.xuetangx.com/) which contains data of 76 
courses held by Tsinghua University in year 2014 and 2015. 



 
Figure 3. Histogram of learning coverage of a course. 

The dataset contains information on individual users and 
courses, as well as the event logs of all users’ online 
activities. There are more than 40 million event log entries in 
the dataset.  

Fig. 1 shows the distribution of the number of 
participants for the courses. Here, participants refers users 
who have enrolled in and have accessed course content [16]. 
The minimum number of participants for a course is 101, and 
the maximum number of participants is 9,668. There are 27 
courses with more than 1,000 participants. 

Fig. 2 shows the distribution of courses in various 
disciplines. Courses in the dataset are already labeled with 
their subject areas as part of the course’s summary 
information. As we can see, engineering, which is a mix of 
many subjects including electronic engineering, mechanical 
engineering, environmental engineering, and so on, has the 
largest number of courses (25%). 

IV. METHOD 

A. Learning Coverage 
We define learning coverage as the amount of content a 

learner has accessed. On MOOC, the content is usually 
organized as a multi-level tree: each course contains several 
chapters, a chapter contains several sections, and a section 
contains various materials, including texts, videos, 
assignments and quizzes. Conceptually, one can calculate the 
learning coverage at different granularities (chapter, section, 
or specific content within a section). The xuetangX dataset 
contains event logs that record users’ online activities with 
the learning platform. Using the event logs we can locate the 
specific section for each event. This enables us to count how 
many sections a learner has accessed.  

As a typical example, Fig. 3 shows the histogram of 
learning coverage for the course, Financial Analysis and 
Decision Making, on xuetangX. Other courses would give a 
similar distribution. The number of students generally 
decreases as the learning coverage increases, but not 
monotonically. Using method presented in [26], we test the 
learning coverage for power law. However, the null 
hypothesis that the learning coverage fits power law is 
rejected in all 76 courses. We believe that the absence of 
monotonicity is a major cause for the rejection.  

A long-tail feature of the frequency-rank distribution can 
be speculated. Consequently, we test the learning coverage 
for the Zipf’s law, which describes the relationship between  

TABLE I.  STATISTICS OF D  AND -valuep   

Statistic Mean Min. 1Q Median 3Q Max. 

D  1.3068 0.8915 1.2107 1.2998 1.3709 1.9752 

-valuep   0.3707 0.0000 0.0000 0.1863 0.8420 1.0000 

 
frequency and rank. We sort the frequency of each learning 
coverage in descending order, and then conduct linear 
regression to the frequency versus the rank in log-log scale 
as a pre-experiment. The results show that the learning 
coverage fits well with a Zipf distribution consistently. For 
all 76 courses, the estimated D  ranges from 1.0018 to 
2.2503. And for all but 3 courses, the R-squared value is 
larger than 90%, indicating a high goodness of fit. The result 
is encouraging. We decide to use the maximum likelihood 
method for a more effective and accurate estimation of the 
Zipf’s law. 
 

B. Fitting Zipf’s Law 
Formally, a random variable X  is Zipf distributed with 

parameter D  � �X ZipfD� , if for a given D �� , 
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Consider the observed sample � �1 2, ,..., kx n n n  from a 
course, with in  being the frequency of the thi  learning 
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likelihood function for sample x  as follows: 
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which gives the probability of the observed sample 
supposedly from a Zipf distribution with parameter D . 

The method of MLE estimates D  by finding a value of 
D  that maximizes � �l xD . For ease of calculation, we 
maximize log-likelihood function, which is 
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Therefore, the gradient with respect to D  of log-
likelihood function is: 
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We can use gradient descent to obtain the optimal 
parameter, D̂ , which maximizes the log-likelihood function. 



 
Figure 5. The number of participants for courses fitting and 

rejecting Zipf distriution. 

 
Figure 4. Fitting result of learning coverage for the course 

Medical Parasitology. 

C. Goodness-of-fit Test 
The method described above allows us to fit a Zipf 

distribution to a given dataset and provide an estimate— D̂ . 
Now we need to determine whether the sample data are 
consistent with the hypothesized distribution, in this case, a 
Zipf distribution with the parameter D̂ . For this, we use the 
chi-square goodness-of-fit test [27]. The null hypothesis for 
the test is as follows: 

0H : The data of learning coverage is consistent 
              with a Zipf distribution with parameter D̂ .  

We can calculate chi-square statistic as: 
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We can get a -valuep  with 1k �  degree of freedom. The 
-valuep  is the probability that a chi-square statistic is more 

extreme than the calculated value from (5). We set the 
significance level to be 0.01. That is, if -value<0.01p , we 
reject the null hypothesis that the data of learning coverage 
is Zipf distributed with the parameter D̂ ; otherwise, the null 
hypothesis is not rejected. 

V. RESULTS 
We calculate the maximum likelihood estimation of D   

based on the log-likelihood function (3) and its gradient (4). 
For finding the optimal value of D  that maximizes log-
likelihood function, we use the MATLAB built-in function, 
called fminunc, as the optimization solver with the initial D  
set to be 1.5. After obtaining D̂ , we conduct a chi-square 

test to determine whether the observed data fit with the 
Zipf’s law. The procedure above is conducted for all 76 
courses. (The code is available upon request.) The results of 
D̂  and -valuep  for the 76 courses are summarized in Table 
I. D̂  ranges from 0.8915 to 1.9752, which is largely 
consistent with our previous study using the linear regression 
method. Fig. 4 shows the results of parameter estimation 
together with the observed data in a course whose D̂  is close 
to the median. The results show that the learning coverage of 
47 courses is likely to fit with the Zipf’s law, which accounts 
for 61.84%. 

The results also show that over 25% of the courses have a 
-valuep  approximate to zero, leading to a definite rejection 

of the null hypothesis. Fig. 5 compares the difference of the 
number of participants between the courses fitting a Zipf 
distribution and those not. We observe that the courses with 
more than 3,000 participants all reject the Zipf’s law. On the 
other hand, most courses with less than 1,000 participants are 
likely to fit with the Zipf’s law. We have tried to focus on 
other differences (e.g., disciplines, semesters) between the  
courses that report different conclusions, but so far no 
meaningful fundamental difference has been found. A 
previous study that uses a similar method for testing the 
Zipf-Mandelbrot model [25] claimed that the size of dataset 
should be no larger than 3,000 for the maximum likelihood 
method. The rejection of the null hypothesis may be caused 
by the limitation of the method.  

The learning coverage is intrinsically related to how 
students perceive and carry on with the courses. In particular, 
the exponent parameter D  can be regarded as an indicator of 
the student retention in the course. Higher D  means that 
more students are either dropping out from the course early 
or simply taking in less content overall. That is, students are 
less engaged with an online course with a higher D  than that 
of a lower D . It would be interesting to correlate this D  
parameter with course’s content quality and alternative 
teaching methods (for example, more forum activities) to 
evaluate potential improvements in student retention. We 
leave the investigation for future work. 

VI. CONCLUSION 
To measure learner’s engagement in MOOC, we 

introduce a new metric, called learning coverage, to estimate 
the amount of course content accessed by the learners. It is a 
measure of how far a learner has advanced into the course. 
By analyzing the dataset provided by the MOOC platform, 
specifically xuetangX, we calculate the learning coverage for 
76 courses of various disciplines. We discover that the 
learning coverage distribution observes a clear long-tail 
feature. To confirm the observation, we apply the MLE 
method to fit the Zipf’s law and conduct a chi-square 
goodness-of-fit test. We found that the learning coverage is 
likely to fit with a Zipf distribution in about 62% of the 
courses. The exponent parameter for the Zipf distribution can 
be used as an inherent feature of the course, representing in 
some degree the student retention in the course, and therefore 
a reflection of the course’s difficulty and popularity.  



Our study can be improved in several ways. First, the 
research context for this study considered learners on one 
Chinese platform as an under-researched and under-
represented group due to data restrictions. The language-
limited population of the study represents a limitation. 
Further work is needed to examine whether the results 
observed here can be generalized to learners on other MOOC 
platforms and learning contexts. Besides this, our method 
can be improved by using better methods to test the 
goodness-of-fit. The chi-square test depends on an adequate 
sample size for the approximations to be valid.  

This study is our first attempt to analyze massive activity 
records data from the MOOC platforms. More in-depth 
studies on discovering knowledge behind the data are 
warranted. Not only will they provide us with methods for 
evaluating the effectiveness of learning on MOOC, but also 
they will provide the educators and MOOC providers with 
the basis for further improving the learning platforms and 
teaching methods. In future work, we would like to 
investigate other methods that can capture the learning 
behavior of the students more accurately, and therefore more 
accurately represent the learning behavior of the students. 
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