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Abstract—Performance Prediction Toolkit (PPT) is a simulator
mainly developed at Los Alamos National Laboratory to facilitate
rapid and accurate performance prediction of large-scale scien-
tific applications on existing and future HPC architectures. In
this paper, we present three interconnect models for performance
prediction of large-scale HPC applications. They are based
on interconnect topologies widely used in HPC systems: torus,
dragonfly, and fat-tree. We conduct extensive validation tests of
our interconnect models, in particular, using configurations of
existing HPC systems. Results show that our models provide
good accuracy for predicting the network behavior. We also
present a performance study of a parallel computational physics
application to show that our model can accurately predict the
parallel behavior of large-scale applications.

Index Terms—Modeling and simulation; High-performance
computing; Interconnection network; Performance evaluation

I. INTRODUCTION

Recent years have witnessed dramatic changes in High-
performance Computing (HPC) to accommodate the increasing
computational demand of scientific applications. New archi-
tectural changes, including the rapid growth of multi-core and
many-core systems, deeper memory hierarchies, complex inter-
connection fabrics that facilitate more efficient data movement
for massive-scale scientific applications, have complicated the
design and implementation of the HPC applications. Translating
architectural advances to application performance improvement
may involve delicate changes to sophisticated algorithms, to
include new programming structures, different data layouts,
more efficient buffer management and cache-effective methods,
and alternative parallel strategies, which typically require highly
skilled software architects and domain scientists.

Modeling and simulation plays a significant role, in identify-
ing performance issues, evaluating design choices, performing
parameter tuning, and answering what-if questions. It is thus
not surprising that there exists today a large body of literature
in HPC modeling and simulation, ranging from coarse-level
models of full-scale systems, to cycle-accurate simulations of
individual components (such as processors, cache, memory,
networks, and I/O systems), to analytical approaches. We note,
however, that none of the existing methods is capable of
modeling a full-scale HPC architecture running large scientific
applications in detail.

To do so would be both unrealistic and unnecessary. Today’s
supercomputers are rapidly approaching exascale. Modeling
and simulation needs to address important questions related

to the performance of parallel applications on existing and
future HPC systems at similar scale. Although a cycle-accurate
model may render good fidelity for a specific component of the
system (such as a multi-core processor) and a specific time scale
(such as within a microsecond), the model cannot be naturally
extended to handle arbitrarily larger systems or longer time
durations. Partially this is due to the computational complexity
of the models (both spatial and temporal). More importantly,
no existing models are known capable of capturing the entire
system’s dynamics in detail. HPC applications are written
in specific programming languages; they interact with other
software modules, libraries and operating systems, which in turn
interact with underlying resources for processing, data access,
and I/O. Any uncertainties involved with the aforementioned
hardware and software components (e.g., a compiler-specific
library) can introduce significant modeling errors, which may
undermine the fidelity achieved by the cycle-accurate models
for each specific component.

George Box, a statistician, once said: “All models are
wrong but some are useful.” In order to support full-system
simulation, we must raise the level of modeling abstractions.
Conceptually, we can adopt an approach, called “selective
refinement codesign modeling”, where we begin with both
architecture and application models at coarse level, gradually
refine the models with potential performance bottlenecks, and
eventually stop at models sufficient to answer the specific
research questions. This iterative process is based on the
assumption that we can identify performance issues from the
models in a timely manner. To do so, we need to develop
methods that facilitate rapid and yet accurate assessment and
performance prediction of large-scale scientific applications on
current and future HPC architectures.

We set out to design and develop a simulator, called the
Performance Prediction Toolkit (PPT). Four major aspects
distinguish our effort from other existing approaches. First,
our simulator needs to easily integrate large-scale applications
(especially, computational physics code) with full-scale archi-
tecture models (processors, memory/cache, interconnect, and
so on). Second, our simulator must be able to combine selected
models of various components, potentially at different levels
of modeling abstraction, providing a trade-off between the
computational demand of the simulator and the accuracy of
the models. Third, the simulator needs to adopt a minimalistic
approach in order to achieve a short development cycle. It



is important that new models can be easily incorporated in
the simulator; the simulator needs to keep up with the fast
refresh rate of HPC systems. Last, the simulator must be able
to achieve scalability and high performance; it needs to be
capable of handling extremely large-scale models, e.g., using
advanced parallel discrete-event simulation techniques.

In this paper, we focus on PPT’s interconnection network
models. There have already been many interconnection network
models in the literature (for example, [1], [2], [3], [4], [5]);
some of them have also shown capable of achieving simulation
of large systems with both accuracy and efficiency. PPT’s
interconnection network models are different in several aspects.

First, PPT’s interconnection network models include widely
used interconnect topologies with emphasis on production
networks (both existing and planned interconnection networks).
In today’s top-ranked HPC systems, we see three common
network types: torus (e.g., Cray’s Gemini and IBM’s Blue
Gene/Q), dragonfly (Cray’s Aries), and fat-tree (Infiniband).
They constitute a majority of the production network topologies.
Our survey on the latest supercomputers (http://www.top500.
org, June 2016) shows that the three topologies account for
54% of the 500 fastest supercomputers in the world (44%
for fast ethernet and 2% proprietary). Among the top 100
supercomputers, the three topologies grow up to 82%. 14 of the
top 15 ranked supercomputers are interconnected by the three
types. In PPT, separate interconnection network models have
been developed and carefully parameterized in PPT to capture
various production interconnection networks. Previously, we
presented a sufficiently detailed interconnect model for Cray’s
Gemini 3D torus network [6]. In this paper, we add the other
two interconnection network models.

Second, PPT’s interconnection network models are packet-
level models, where network transactions (e.g., for MPI
send/receive and for collective operations) are modeled as dis-
crete events representing individual packets (typically, around
64 bytes in size) being transferred by the network switches
and compute nodes. This is a conscious design decision. Our
hypothesis is that in most scenarios, packet-level simulation
should be sufficient to capture major network behaviors
(throughput, delay, loss, and network congestion) with sufficient
accuracy, and as such, should be able to identify potential
performance bottlenecks at the interconnection networks while
running large-scale scientific applications. Compared to more
detailed models, such as those implemented at the phit level
(virtual channels), packet-level simulation can easily outperform
detailed models by several orders of magnitude. Our preliminary
experiments (discussed more later) suggest that our packet-level
models can provide sufficient accuracy.

Last, PPT’s interconnection network models can be easily
incorporated with the application models. Our interconnection
network models interface with the Message Passing Interface
(MPI) model. MPI is the most commonly used parallel program-
ming tools for scientific applications on modern HPC platforms.
Our MPI model provides convenient methods for deploying
the parallel applications and performing communications on
the target parallel platform. We have implemented all common

MPI functions, including point-to-point communications (both
blocking and asynchronous methods) and collective operations
(such as gather/scatter, barriers, broadcast, reduce, and all-to-
all). In addition, we implemented MPI groups and communica-
tors so that collective communications can take place among
an arbitrary subset of processes. As a result, most scientific
applications can be simulated directly using the communication
functions provided by the MPI model.

The rest of this paper is organized as follows. Section II
describes related work and compares our approach with the
existing methods. Section III describes the overall design
and implementation of our Performance Prediction Toolkit,
in particular, focusing on the interconnection network models.
We provide the details of our torus, dragonfly and fat-tree
interconnection network models (along with validations) in
Section IV, Section V and Section VI, respectively. Section VII
presents a trace-based simulation study to demonstrate the
capability of our model for incorporating realistic applications.
Section VIII describes a performance study of a parallel
application (computational physics) using our interconnection
network model and shows that our model can accurately
predict the strong-scaling trends of the application. Finally,
we conclude the paper and outline future work in Section IX.

II. RELATED WORK

Many HPC simulators exist. Here we focus on those that
provide interconnection network models. Some of these simula-
tors aim at full-system simulation, where parallel applications
are simulated to their behavior on the target architecture.
BigSim [1] falls into this category. BigSim is built on Charm++
for scalable performance, which is an object-based and message-
driven parallel programming system [7]. The interconnection
network model implemented in BigSim, however, is relatively
simple. For example, it does not consider network congestion
in detail [8].

To study the performance of large-scale MPI applications,
µπ is an MPI simulator based on an efficient conservatively-
synchronized parallel simulator that features a process-oriented
world-view [9]. Experiments show that the simulator is capable
of simulating hundreds of millions of MPI ranks running on
parallel machines. However, µπ does not have any reasonably
detailed interconnection network model. The same can be said
about the Extreme-scale Simulator (xSim) developed at the
Oak Ridge National Laboratory [2]. xSim supports execution
of millions of virtual MPI ranks running a very simple MPI
program, using a lightweight parallel discrete-event simulation
(PDES) engine.

The CODES simulator [10] is a comprehensive simulation
platform that can model various large-scale HPC systems,
including storage systems, interconnection networks, HPC and
data center applications. CODES is built on ROSS, a parallel
discrete-event simulation engine using reverse computation [11].
CODES provides detailed models for various interconnect
topologies, including torus [4], dragonfly [5], and fat-tree [3].
CODES has shown capable of simulating large-scale intercon-
nect configurations (with millions of nodes).



Although CODES is complementary to our work, there are
three major differences. First, the interconnection network
models in CODES are phit-level models that can capture
more detailed transactions related to virtual channels than the
corresponding packet-level models in PPT. While conceptually,
more detailed models may render higher simulation fidelity,
the computational demand would be much higher (by as much
as several orders of magnitude). As such, a performance study
using CODES typically would only focus on simple operations
(for example, a random send/receive pattern or one collective
call) and at a much smaller time scale, while using PPT we
can study more complex application behaviors with greater
efficiency and flexibility. In terms of accuracy, our experiments
show that PPT’s interconnection models can reasonably produce
performance results that match from other empirical studies.

Second, CODES does not have a full-fledged MPI model.
On the contrary, the interconnection network models in PPT are
fully integrated with the MPI implementation from design. In
this way, one can easily model complex application behaviors
in PPT.

Last, the interconnection network models in PPT are de-
signed to reflect real implementations (e.g., Cray’s Gemini,
Aries, IBM Blue Gene/Q, and Infiniband). In doing so,
we can study the performance of applications over various
interconnection networks of real (either existing or planned)
HPC systems.

III. PERFORMANCE PREDICTION TOOLKIT (PPT)

In this section, we provide a brief overview of PPT and
existing components of interconnection network models.

A. Overall Design

The Performance Prediction Toolkit (PPT) is designed specif-
ically to allow rapid assessment and performance prediction
of large-scale scientific applications on existing and future
high-performance computing platforms. More specifically, PPT
is a library of models of computational physics applications,
middleware, and hardware that allows users to predict execution
time by running stylized pseudo-code implementations of
physics applications.

PPT models are highly parameterized for applications,
middleware, and hardware models, allowing parameter scans to
optimize parameter values for hardware-middleware-software
pairings. PPT does not yield cycle-accurate performance
metrics. Instead, the results from PPT are used to examine
underlying algorithmic trends and seek bottlenecks to on-node
performance and scaling on HPC platforms. The conclusions
of such analysis may range from optimization of current
methods to further investigation of more substantial algorithmic
variations.

An application is a stylized version of the actual application
that captures the loop structure of important numerical kernels.
Not all elements of the code are included in a PPT application,
and it does not predict numerical accuracy of an algorithm,
but rather predicts the execution time of a given job instance.

Middleware models in PPT currently include only MPI. It
interfaces with the PPT application models and implements
the communication logic in the loop structure of the actual
applications.

Hardware models exist for interconnection networks and
compute nodes. PPT’s interconnection models are fully in-
tegrated with the MPI model. The interconnection models
implement different network topologies and can be set up with
different configurations. The library consists of configurations
for various common production interconnection networks.

The node models in PPT use hardware parameters clock-
speed, cache-level access times, memory bandwidth, etc.
Application processes can advance simulated execution time
by calling a compute-function with a task list as input, which
consists of a set of commands to be executed by the hardware,
including, for example, the number of integer operations, the
number of floating-point operations, the number of memory
accesses, etc. The hardware model uses this information to
predict the execution time for retrieving data from memory,
performing ALU operations, and storing results.

B. Simian

PPT is developed based on Simian, which is an open-source,
process-oriented parallel discrete-event simulation (PDES)
engine [12]. Simian has two independent implementations
written in interpreted languages, Python and Lua, respectively.

Simian has several unique features. First, Simian adopts
a minimalistic design. At its core, Simian consists of only
approximately 500 lines of code. It thus requires low effort
to understand the code and it is easy for model development
and debugging. Second, Simian features a very simplistic ap-
plication programming interface (API). The simulator consists
of only three main modules and a handful of methods. To
maximize portability, Simian requires minimal dependency on
third-party libraries. Third, Simian takes advantage of just-in-
time (JIT) compilation for interpreted languages. For certain
models, Simian has demonstrated capable of outperforming
C/C++-based simulation engine.

Simian supports process-oriented world view. It uses
lightweight threads to implement the simulation processes—
greenlets in Python and coroutines in Lua. In PPT, each parallel
instance of an application is naturally implemented as a process.
Thus, the processes can be blocked for sending and receiving
messages using MPI.

C. MPI model

The Message Passing Interface (MPI) model is commonly
used by parallel applications. We have previously implemented
MPI model, which performs communication between compute
nodes over the underlying interconnection network [6].

We have implemented all common communication
functions in MPI. These functions can be divided into
three groups. The first group consists of functions
for point-to-point communications, which include:
MPI_Send (blocking send), MPI_Recv (blocking
receive), MPI_Sendrecv, MPI_Isend (nonblocking



send), MPI_Irecv (nonblocking receive), MPI_Wait, and
MPI_Waitall. The second group are collective operations,
which include: MPI_Reduce (reduction), MPI_Allreduce,
MPI_Bcast (broadcast), MPI_Barrier, MPI_Gather
(gathering data), MPI_Allgather, MPI_Scatter
(scattering data), MPI_Alltoall (pairwise communications),
and MPI_Alltoallv. The third group of functions
deal with groups and communicators. They include:
MPI_Comm_split (create new sub-communicators),
MPI_Comm_dup, MPI_Comm_free, MPI_Comm_group
(new group), MPI_Group_size, MPI_Group_rank,
MPI_Group_incl (new subgroups), MPI_Group_excl,
MPI_Group_free, MPI_Cart_create (new cartesian
communicator), MPI_Cart_coords, MPI_Cart_rank
and MPI_Cart_shift.

The underlying interconnection network determines the
details of the MPI implementation. For example, Cray’s XC
series network uses Aries dragonfly interconnect [13]. MPI uses
Fast Memory Access (FMA) for message passing. Messaging
are performed as either GET or PUT operations (depending on
the size of the message). A PUT operation initiates data flow
from the source to the target node. When a packet reaches
destination, a response from the destination is returned to the
source. FMA allows a maximum of 64 bytes of data transfer
for each network transaction—larger messages must be broken
down into individual 64-byte transactions. A PUT message
consists of a 14-phit request packet (i.e., 42 bytes, where
each phit is 24 bits). Each request packet is followed by a
1-phit response packet (3 bytes) from destination to source. A
GET transaction consists of a 3-phit request packet (9 bytes),
followed by a 12-phit response packet (36 bytes) with 64 bytes
of data.

Packets are handled individually in the interconnection
network, as they follow their routes visiting individual network
switches in sequence from the source node to the destination
node. In Simian, we use separate processes inside the compute
nodes and switch nodes for handling packet buffering and for-
warding. A reliable data transfer scheme (with acknowledgment
and retransmission) is implemented at the compute nodes.

IV. TORUS MODEL

In this section, we present implementation of torus-based
interconnects. First, we briefly outline the 3-D torus-based
Gemini interconnect. Next, we describe our implementation
of 5-D torus-based Blue Gene/Q interconnect architecture,
along with a validation of our implementation of Blue Gene/Q
interconnect.

A. Cray’s Gemini Interconnect

Previously, we designed and implemented a detailed model
for the Gemini interconnection network [6]. Gemini is a part of
the Cray’s XE6 architecture, where each compute node contains
two processors with its own memory and a communication
interface. The switch nodes each connect with two compute
nodes; they are interconnected as a 3-D torus. Each switch
node gives ten torus connection: two connections per direction

in the “X” and “Z” dimension and one connection per direction
in the “Y” direction. To model potential congestions in the
network, we implemented a detailed queuing model to capture
the interactions of network transactions (packet send, receive,
and buffering). Our interconnection network model supports
multiple routing algorithms, such as deterministic, hashed, and
adaptive, which can be selected during configuration.

We conducted extensive validation study of the Gemini
interconnection network model [6]. We measured the model-
predicted MPI performance (bandwidth and latency for point-to-
point and collective communications) and compared the results
with published results in the literature. We also conducted a
trace-driven simulation of communication calls from real-life
scientific applications. Results have all shown that our Gemini
interconnect model provides good accuracy.

B. Generic Torus Model

We extended the Gemini model and developed a generic
model for the torus topologies for all dimensions (i.e., 5-D
torus, 6-D torus etc.). In this paper, we specifically focus on
the interconnect for the Blue Gene/Q architecture, which is a
5-D torus topology.

1) Blue Gene/Q Interconnect: IBM’s Blue Gene/Q is a
system currently used by many large-scale high-performance
systems (e.g., Sequoia at Lawrence Livermore National Labo-
ratory (LLNL), Mira at Argonne National Laboratory (ANL),
Vulcan at LLNL). Blue Gene/Q is a 5-D torus-based inter-
connect architecture, where each switch node connects to ten
neighboring switches (two in each direction in five dimensions).
The network is optimized for both point-to-point and collective
MPI communications [14]. The message unit (MU) in Blue
Gene/Q supports both direct PUT and remote GET, where
messages are packetized for transmission [15]. Data portion of
packets increments in chunks of 32 bytes, up to 512 bytes [15].
Packets contain 32-byte header: 12 bytes for the network and
20 bytes for the MU.

2) Validation: Now we present a validation of our 5-D
torus-based Blue Gene/Q interconnect model. We considered
a real HPC system, IBM Sequoia supercomputer, that deploys
Blue Gene/Q interconnect architecture. IBM Sequoia was built
by IBM and is maintained by Lawrence Livermore National
Laboratory (LLNL). Sequoia consists of 96 racks containing
98,304 compute nodes connected via the 5-D torus topology of
dimensions 16× 12× 16× 16× 2 [16]. The bandwidth along
the links is 2 GB/s [15]. The link delay is set to be 40 ns [16].
We measured the end-to-end latency between two end nodes
for a Blue Gene/Q system (to compare with the latency values
reported in [15]). The end-to-end latency is measured by the
propagation delay and the number of hops between the two
end nodes. In this latency test, an MPI process sent an 8-byte
data to all other MPI processes (mapped on different compute
nodes). The measured delays are between 700 ns and 1300
ns. The results are consistent with the data reported in [15]
(where the Blue Gene/Q system end-to-end latency is reported
to be between 718 ns and 1264 ns).



V. DRAGONFLY MODEL

In this section, we first describe our dragonfly interconnect
model and then focus specifically on Cray’s Aries interconnect
that has been applied in many real HPC systems. We conducted
validation experiments of our Aries interconnection network
model, the results of which are presented at the end of this
section.

A. Dragonfly Topology

Dragonfly topology was first proposed in [17]. It is a
cost-efficient topology, which reduces network cost through
exploiting the economical, optical signaling technologies and
high-radix (virtual) routers. Dragonfly topology has a three-
tier network architecture [17]. At first level, each router is
connected to p nodes, usually through backplane printed
circuit boards (PCBs) links. At second level, a group is
formed through connecting a routers to each other. The local
connections used in this level are referred to as intra-group
connections. These connections are typically built using short-
length electrical cables. At the last level, each router has h
inter-group connections to routers in other groups. These global
connections are usually built using longer optical cables. The
maximum network size of such dragonfly topology is ap(ah+1)
nodes.

In this paper, we consider a dragonfly topology with local
link arrangement to be completely-connected (i.e., a 1-D
flattened butterfly). Therefore, each router has a − 1 local
connections to the other routers in the group. Global link
arrangement specifies how switch in a group is connected to
switch of the other group. Several alternatives for global link
arrangements are defined and evaluated against each other in
the literature (e.g., consecutive, palmtree, circulant-based) [18].
In this paper, we consider the consecutive arrangement of global
links, which was also considered in the paper where dragonfly
was initially proposed [17], [18]. The consecutive arrangement
connects routers in each group consecutively, where groups
are also numbered consecutively.

In our dragonfly implementation, we support two types
of routing: minimal (MIN) and non-minimal (VAL). MIN
routing is ideal for benign traffic patterns (e.g., uniform random
traffic). Since we consider completely-connected local channels,
any packet can reach destination in at most three hops: one
hop within the source group to reach the switch with global
connection to the destination group, one hop to traverse the
global link and one hop within the destination group to reach
the destination node. VAL routing, on the other hand, is suitable
for adversarial traffic patterns. Following the principal of this
algorithm, we route a packet to a randomly chosen intermediate
group first and then route to the final destination. As a result of
using 1-D local channels, a packet generally reaches destination
through traversing two global channels and three local channels.

Another dragonfly routing variation is Universal Globally-
Adaptive Load-balanced (UGAL) routing, which chooses
between MIN and VAL on a packet-by-packet basis and sends
packet to paths with least queuing delay to alleviate congestion.
Since for a large-scale system, it is infeasible to know the queue

(a) (b)

Fig. 1. Cray’s Aries block diagram. (a) Aries ASIC, (b) Aries connections.

information on all other queues (UGAL-G), the switching
between MIN and VAL can be performed based on local queue
information (UGAL-L). We do not consider adaptive routing
at all in our current implementation. Our logics behind such
decision are the followings: 1) We expect adaptive routing
to play a minor role in the overall performance prediction of
large-scale HPC applications compared to other factors; and 2)
The additional overhead of message communication necessary
for implementing adaptive routing would significantly impact
scalability of our simulation.

B. Cray’s Aries Interconnect

Cray’s Aries network (developed as part of Defense Ad-
vanced Research Projects Agency’s or DARPA’s program) uses
dragonfly topology [19], [13]. Aries contains a 48-port router,
four network interface controllers (NICs) connecting four nodes
and a multiplexer known as Netlink. The system is built from
four-node Aries blade (where each blade contains a single
Application-specific Integrated Circuit or ASIC). A simplified
block diagram for Aries ASIC is shown in Fig. 1(a). Aries
network consists of Cascade cabinets, where each pair of
cabinets can house up to 384 nodes. There are three chassis
per cabinet, each chassis contains 16 Aries blades. Two such
cabinets construct a group (i.e., each group in Aries contains
six chassis or 96 Aries blades).

We implemented three types of connections in Aries inter-
connect. The first dimension, which is also termed as green
dimension, connects each blade in a chassis to the other 15
blades in the same chassis through chassis backplane. The
second dimension is known as black dimension. Each Aries
blade has connections to 5 other peer nodes of the other chassis
in the group through electrical cables. The third dimension
consists of blue links. Each Aries blade contains 10 global links;
each group contains 96 blades. Therefore, one could possibly
support 960 groups in an Aries system. However, following
an actual Aries system, we grouped four global links into one,
and the maximum allowed system size of our designed Aries
interconnect is 241 groups. We connected the groups using the
consecutive arrangement scheme. The connections are shown
as an example in Fig. 1(b).

Both MIN and VAL routings are supported in Aries architec-
ture [20]; we implemented both in our model. There are two
cases. For intra-group routing, MIN routing requires at most
two hops, while VAL routing selects a random switch inside the
group and thus requires up to four hops. For inter-group routing,
MIN routing requires at most five hops to reach destination



(two local link traversals each for source and destination groups,
and one global link traversal), where VAL routing selects a
random intermediate group. For the latter, a packet needs to be
routed to a random intermediate switch in each of the source
group, destination group and intermediate group, thus requiring
at most fourteen hops before a packet is reaching its destination.

C. Aries Validation

As described in the previous section, Aries has 96 switches
per group, 4 hosts per switch. Each switch has 48 network
ports: 40 of which are used to connect the switches together
and 8 are used to connect the switch to processors. We set the
inter-group link bandwidth to be 4.7 GB/s per direction and
intra-group link bandwidth per direction to be 5.25 GB/s [21].
The bandwidth of the interface connecting a host to its router
is set to be 16 GB/s [13]. The link latency is set to be 100
ns (in a quiet network, measured router-to-router latency is
reported to be 100 ns [13]).

For validation, we considered a large-scale interconnect
at a recently-developed HPC system for validation of Aries.
Trinity is being built at Los Alamos National Laboratory by
U.S. Department of Energy (DOE). Trinity uses a Cray XC40
system that consists of 9436 nodes [22] connected via the Aries
dragonfly network. We measured average end-to-end latency
for considered interconnect system as a function of transfer size.
Fig. 2(a) shows measured MPI latencies from our simulator.
Fig. 2(a) also compares our latencies with the empirical result
reported in [13]. As shown in the figure, our measured MPI
latencies closely resembles the published results.

We measured the MPI throughput between two different
nodes for different message sizes and compared it with
the empirical values also published in [13]. The results are
demonstrated in Fig. 2(b). We considered two different types of
traffic for throughput comparison: pingpong and unidirectional.
Fig. 2(b) shows that, in case of pingpong traffic, the simulation
closely resembles the empirical results until 4K data size
and after 4K data size, we can observe a slight shift. For
unidirectional traffic, a good match is observed above 16K
data size. Overall, the model has a good prediction of the
throughput in general. There are many factors that may affect
the throughput, including buffer management at both the sender
and receiver, and also system overheads that may not be
included in our model.

We also conducted a latency measurement for MPI collective
operations. For this experiment, we used the configuration
of interconnect deployed at supercomputer Darter. Darter
was built by National Institute of Computational Sciences
(NICS) [23]. It is a Cray XC30 system that consists of 748
compute nodes and 10 service nodes in two groups. The nodes
are connected using dragonfly network topology with Cray’s
Aries interconnect. Fig. 2(c) shows the result of measured
time for MPI_Allreduce, as we vary the message size.
As expected, the latency of collective operation increases
with increase in message size. When message size becomes
much higher, delay increases due to congestion in the network.
We compared our results for MPI_Allreduce time with

the one reported at [24], for a similar configuration (i.e.,
the Darter supercomputer). The compared results show close
correspondence to each other.

VI. FAT-TREE MODEL

In this section, we present our fat-tree topology model design
and a validation of fat-tree model based on configuration used
for Infiniband interconnect architecture.

A. Fat-tree Topology

Fat-tree is one of the most widely used topologies for current
HPC clusters and also the dominant topology on Infiniband (IB)
technology [25]. Besides, this interconnect has also received
significant attraction in data center networks [26]. Some unique
properties that make fat-tree much popular among HPC and
data center networks are: deadlock avoidance without use of
virtual channels, easier network fault-tolerance, full bisection
bandwidth, etc.

Since its first introduction, many variations of fat-tree have
been proposed in the literature (e.g., [27], [28]). Among them,
m-port n-tree fat-tree [27] and k-ary n-tree [28] are the most
popular ones. In this work, we implement the m-port n-tree
variations due to its wide popularity compared to other existing
fat-tree variations [29]. As such, it has been considered in
recent literature as the fat-tree topology variation for large-
scale systems [3].

An m-port n-tree is a fixed-arity fat-tree consisting of
2(m/2)n processing nodes and (2n − 1)(m/2)n−1 m-port
switches [27]. The height of the tree is n + 1. Each of the
switches in an m-port n-tree have an unique identifier based
on the level and value of m and n. The processing nodes are
the nodes in the leaf and are also denoted uniquely. We used
notation scheme outlined in [27] to denote both switches and
processing nodes. We connected the switches to each other in
both upward and downward directions and also to processing
nodes based on the conditions specified in [27].

We implemented routing in the fat-tree network as two
separate phases: upward phase and downward phase. In upward
phase, the packet is forwarded from a source towards the
direction of one of the root switches. In downward phase,
the packet is forwarded downwards towards one of the leaf
nodes as the destination. Transition between these two phases
takes place at the lowest common ancestor (LCA) switch.
The LCA switch can reach both the source and destination
using downward ports of that switch. Many efforts exist to
improve the routing performance in fat-tree network (e.g.,
Valiant algorithm [30], ECMP [31], Multiple Local Identifier
(MLID) routing scheme [27]). We implemented the MLID
routing scheme for Infiniband network, as presented in [27].
MLID routing scheme relieves the link congestion through
exploiting multiple paths available in fat-tree topology.

B. Fat-tree Validation

Now we present validation of our m-port n-tree fat-tree-
based Infiniband interconnect system. As an example of HPC
system deploying fat-tree interconnect, we consider Stampede
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Fig. 2. Aries validation. (a) Comparison of Aries latencies in terms of message size, (b) Comparison of Aries MPI throughput in terms of message size, (c)
Comparison of MPI Allreduce time.
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Fig. 3. Comparison with FatTreeSim and Emulab. (a) Nearest neighbor traffic,
(b) Random destination traffic.

supercomputer specifications. Stampede is built by National
Science Foundation (NSF) at the Texas Advanced Computing
Center (TACC), U.S. Stampede consists of 6,400 nodes
connected via fat-tree-based Infiniband FDR network [32]. The
FDR Infiniband consists of 56 Gb/s Mellanox switches [32]
and we use this configuration in both uplink and downlink
bandwidth of our fat-tree interconnect model. We assign 0.7
µs as uplink and downlink latency for our considered fat-tree
interconnect [33].

We compare our model with the output reported by a recently-
proposed fat-tree simulator, FatTreeSim [3]. We also compare
with Emulab (a network testbed) output reported at [3] for
similar system setup. We consider a 4-port 3-tree fat-tree
interconnect with total 16 processing nodes and 20 switches.
We set the message size to 1,024 bytes. We consider two
traffic patterns for comparison: nearest neighbor and random
destination. We vary the number of messages from 500 to
8,000 for conducting similar comparison to data reported
in [3]. Figs. 3(a) and 3(b) show comparison with Emulab and
FatTreeSim for the nearest neighbor and random destination
traffic, respectively. As evident from both figures, average
latency calculated for each message in our model demonstrates
close correspondence to the result from both Emulab and
FatTreeSim and for both types of traffic with varying number
of messages.

VII. TRACE-BASED SIMULATION

We perform a brief comparison study of different topology
performance based on real-life application communication
traces provided by the National Energy Research Scientific
Computing Center (NERSC) [34]. The traces provide parallel

speedup performance and MPI communication operations after
running various DOE mini-apps at large-scale communication
facility. For each run of an application, a set of trace files (one
for each MPI ranks) are provided. We collected and processed
the trace files using the SST DUMPI toolkit [35]. The processed
output contains the measured start and end time of the MPI call
and parameters exclusive to the call (e.g., source or destination
rank, data size, data type). We run the simulation by reading
processed trace file for each rank, one entry at a time, and
then calling the corresponding simulator MPI process. We run
the trace for each of the interconnection network models we
have presented (i.e., Aries, Fat-tree, Gemini, Blue Gene/Q). We
use configurations of Trinity and Stampede interconnects to
represent architectures of Aries and Fat-tree, respectively. We
use interconnect configuration of Hopper (a supercomputer built
by NERSC [36]) in our Gemini interconnect validation. Hopper
contains 6,384 nodes connected via the Gemini interconnect
at 17 × 8 × 24. For Blue Gene/Q architecture, we use the
interconnect configuration of Mira (a supercomputer at Argonne
National Laboratory, which uses 5-D torus-based Blue Gene/Q
at dimensions: 8× 12× 16× 16× 2).

For this experiment, we collected the traces for DOE
mini-app Big FFT (which solves 3-D FFT problem) on
100 processes from [34]. There are a total of 400 calls
to MPI_Alltoallv and 500 calls to MPI_Barrier.
The trace also contains a number of group and sub-
communication MPI calls: 4000 calls to MPI_Group_free,
2000 calls to MPI_Group_incl and 2000 calls each to
MPI_Comm_create and MPI_Comm_group. Running such
trace-based simulation serves two purposes: 1) It demonstrates
that our designed topology models are capable of supporting
real-life communication applications, and 2) It provides a
comparison among different interconnect topologies with
respect to their effect on parallel applications.

Fig. 4 shows average number of hops traversed by each of
the different topologies considered in this paper. As can be
seen in the figure, Aries incurs the minimum number of hops
in average, while Gemini has the maximum number of hops.
Fig. 4 also shows that the simulation time differs in accordance
with the number of hops: Aries incurs minimum simulation
time, while Gemini takes the most simulation time, among all
four types of topologies.
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VIII. SNAP PERFORMANCE STUDY

The SN Application Proxy (SNAP) [37] is a “mini-app”
based on the production code PARTISN [38] at Los Alamos
National Laboratory (LANL). PARTISN is a code for solving
the radiation transport equation for neutron and gamma
transport. The resulting solution is the distribution of these
sub-atomic particles in space, direction of travel, particle speed,
and time. These dimensions of space, direction, speed, and
time form a phase space that is discretized to formulate a linear
system of equations. Solving this system of equations in parallel
in the most efficient manner may depend on the architecture of
the supercomputer employed. Simulation capabilities provided
by the PPT will allow faster exploration of the optimizations
and variations necessary when considering different computing
systems.

For problems of particular interest, the geometry is often
modeled in three dimensions, x-y-z. A finite volume discretiza-
tion creates a structured, Cartesian mesh of spatial mesh cells.
In 3-D space, particle trajectory is defined by the projection of
some vector of unit length to the three axes of the coordinate
system. This scheme offers two degrees of freedom—i.e.,
projection to two axes of a unit vector forces the third projection
to a unique value. For our transport solver, we apply the
so-called discrete ordinates solution technique, whereby we
compute the solution for a finite set of possible directions or
“angles.” Each angle is associated with a particular weight, and
the solution for each angle may be performed individually.
This scheme is known as “discrete ordinates,” and we build the
set of angles according to well-known numerical quadrature
rules for integration. The two degrees of freedom manifest
themselves in SNAP as a list of angles per octant in 3-D space
and the eight octants themselves. Particle speed (or energy)
is binned into groups that represent the sum of all particles
in some range of energy values. Lastly, the time dimension is
discretized with a finite difference solver. We have a system
of equations in seven dimensions (three in space, two in angle,
one in energy, and one in time).

The governing transport equation is hyperbolic in nature
in the space-angle dimensions. Information flows from an
upstream source to downstream destinations. The solution for
any given direction in the discrete ordinates solution scheme
thus requires one to add particle sources and subtract particle
sinks while stepping logically through the spatial mesh cells.
Colloquially, it is known as a “transport mesh sweep.” A mesh

Fig. 5. A 2-D illustration of the parallel wavefront solution technique for
radiation transport.

sweep can further be thought in terms of a task graph. Such a
graph for a mesh sweep on a structured mesh, as we have in
SNAP, is known a priori and is the same for all directions. This
allows scheduling and operation optimizations to be included
explicitly in the code.

This system of equations offers multiple levels of parallelism
which are exploited in SNAP [39]. The global spatial mesh is
distributed across MPI ranks. Parallel solution over the spatial
domain is achieved with a parallel wavefront solution technique
specific to radiation transport, called the KBA method. An MPI
process is assigned all spatial cells along one dimension in x-y-
z space. This dimension itself is broken up into smaller spatial
“work chunks.” Mesh sweeps are done in octant-pairs— i.e.,
the +/−x-direction. A sweep begins in one octant for the sole
chunk with no upstream dependence. Downstream, parallelism
over space is achieved by solving for work chunks on the same
diagonal plane, because such work chunks are independent.
Octant pairs and energy groups are “pipelined” to extend the
graph and maximize parallel efficiency. Different octant pairs
are started at the completion of some previously scheduled
pair. Fig. 5 shows an example of a 2-D mesh.

This solution process is performed for all angles of an octant
and for all octants. The solution for each angle may be per-
formed independently. This is achieved by aligning the data and
using vector instructions to apply single-instruction-multiple-
data parallelism to each operation that uses information from
the angular domain. This process must be repeated for each
different group. Shared memory and OpenMP threads are also
employed in SNAP to parallelize the work over the energy
domain, but this has not yet been modeled in the PPT.

We implemented an application model for the parallel wave-
front solution technique of SNAP, called SNAPSim. SNAPSim
uses similar input variables as described above to parameterize
the problem to describe the size of the problem and the size
of the individual tasks. Although SNAP requires iterations
to formulate a solution, SNAPSim uses a fixed number of
iterations, which is a sufficient abstraction for modeling the
cost of instructions, data flow, and communications for an
actual SNAP simulation. The sum of all work is broken up
into work chunks, where each chunk represents the solution
for some chunk of spatial cells, all directions captured by a
single octant of a unit sphere, and all particles binned into
a single energy group. The nature of the problem permits
that some work chunks be performed concurrently, and other



chunks wait for these upstream tasks to be completed before
progressing. The model captures this scheduling and estimates
the compute time associated with a single chunk for different
architectures. The time is computed per a hardware simulator
that uses machine-specific details to estimate the computation
time.

The SNAPSim model does not solve any transport equations,
but it does estimate the cost to perform those operations. A
function is used to compute the time necessary to handle some
“tasklist.” This tasklist comprises integer, floating point, and
vector operations; data loads; and estimates of memory locality
for costs of cache misses. SNAPSim uses two tasklists: one
for the actual sweep operations and one for computing source
terms that couple the solutions of different energy groups.
Each tasklist is determined by the problem parameters. A
SNAPSim instance is defined by the number of cells in x-
y-z space, nx × ny × nz; the number of angles per octant,
nang; the number of groups, ng; and the number of time
steps, nsteps. The size of each chunk is also provided with
the parameters ichunk, jchunk, and kchunk. Formulas using
these parameters were prepared by counting instructions in an
architecture-independent way with the Byfl application analysis
code [40].

SNAPSim mimics the sweep process described above once.
The functions for computing tasklist-associated times are
also performed once. Simulated MPI calls using the MPI
and interconnect simulators ensure the proper sweep order
is maintained. When a task between MPI communications
would normally be performed, SNAPSim instead simulates an
MPI-sleep time equal to the pre-computed time according to
the tasklist. The result is the approximate solution time for
a single iteration, which we can replicate as many times as
necessary. The final approximation can either be used for its
own analysis or compared to actual SNAP runs for validation
of the SNAPSim model, as we discuss below.

To test the SNAPSim model using the MPI and interconnect
simulators provided by the PPT, we use the PPT hardware and
interconnect model of NERSC’s Edison supercomputer. Edison
is a Cray XC30 system that uses the Aries interconnect with a
dragonfly topology. Each node in Edison is composed of two
sockets, each with 12 Intel Ivy Bridge cores and 32 GB of
main memory.

Our interest to date has been to model parallel SNAPSim
runs in a strong-scaling sense, by fixing the size of the problem
and using additional resources (i.e., cores or MPI processes) to
continually reduce the number of spatial cells assigned to any
one core. We present the results of two strong-scaling studies
that differ in the size of the problem considered in terms of
the number of cells, angles, and groups.

The first problem uses a 32 × 32 × 48 spatial mesh, 192
angles, and 8 groups. Chunk sizes for spatial parallelism
contain 8 cells in the x-dimension and a number that ranges
from four cells to one cell in both the y- and z-dimensions
as the number of processes is increased. We always start
from 24 cores or one compute node to focus on the effects
of off-node communication on scaling. Fig. 6(a) shows that
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Fig. 6. SNAPSim vs. SNAP Edison strong scaling. (a) Study #1: smaller
problem demonstrates scaling limitation, (b) Study #2: larger problem for
continued scaling.

this problem has a low computational load at high core
counts. The small computation-to-communication ratio leads
to diminishing returns with increasing cores and perhaps even
worse performance. While not in exact agreement, the simulator
is capturing the trend from measured SNAP simulations quite
well.

The second problem is larger with a 64×32×48 spatial mesh,
384 angles, and 42 energy groups. Each chunk has 16 cells in
the x-dimension and a number of cells in the other dimensions
that varies with increasing processes. Fig. 6(b) shows how this
problem maintains a much more consistent scaling trend due
to the larger amount of computation between communications.
And importantly, the PPT model again predicts the measured
trend well.

The results show the PPT can accurately predict strong
scaling trends for SNAP on modern hardware with a well-
understood interconnect. Succeeding in this validation exercise
permits future deployment of SNAPSim and the PPT for
optimizing performance according the strong scaling properties
without requiring a system allocation and extensive testing.

IX. CONCLUSIONS

In this paper, we presented interconnection network models
for performance prediction of large-scale scientific applications
on HPC system. Specifically, we presented interconnect models
for three widely used topologies and corresponding interconnect
architectures: dragonfly (Cray’s Aries), fat-tree (Infiniband)
and 5-D torus (IBM’s Blue Gene/Q). We conducted extensive
validation study of our interconnection network models, includ-
ing a trace-driven simulation of real-life scientific application
communication patterns. We also performed performance study
of a computational physics-based parallel application using our
interconnect model. All the results show that our interconnect
models provide reasonably good accuracy. For future work, we
plan to translate all our interconnect models to Simian Lua to
study the parallel performance of our interconnect models on
large-scale HPC systems.
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for performance prediction of extremely large parallel machines,” in
Proceedings of the 18th International Parallel and Distributed Processing
Symposium. IEEE, 2004, p. 78.

[2] C. Engelmann and F. Lauer, “Facilitating co-design for extreme-scale
systems through lightweight simulation,” in Cluster Computing Work-
shops and Posters (CLUSTER WORKSHOPS), 2010 IEEE International
Conference on. IEEE, 2010, pp. 1–8.

[3] N. Liu, A. Haider, X.-H. Sun, and D. Jin, “FatTreeSim: Modeling large-
scale fat-tree networks for HPC systems and data centers using parallel
and discrete event simulation,” in Proceedings of the 3rd ACM Conference
on SIGSIM-Principles of Advanced Discrete Simulation. ACM, 2015,
pp. 199–210.

[4] N. Liu, C. Carothers, J. Cope, P. Carns, and R. Ross, “Model and
simulation of exascale communication networks,” Journal of Simulation,
vol. 6, no. 4, pp. 227–236, 2012.

[5] M. Mubarak, C. D. Carothers, R. Ross, and P. Carns, “Modeling a
million-node dragonfly network using massively parallel discrete-event
simulation,” in High Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion:. IEEE, 2012, pp. 366–376.

[6] K. Ahmed, M. Obaida, J. Liu, S. Eidenbenz, N. Santhi, and G. Chapuis,
“An integrated interconnection network model for large-scale performance
prediction,” in Proceedings of the 2016 annual ACM Conference on
SIGSIM Principles of Advanced Discrete Simulation. ACM, 2016, pp.
177–187.
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