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Abstract—Mininet is a popular container-based emulation
environment built on Linux for testing OpenFlow applications.
Using Mininet, one can compose an experimental network using a
set of virtual hosts and virtual switches with flexibility. However,
it is well understood that Mininet can only provide a limited
capacity, both for CPU and network I/O, due to its underly-
ing physical constraints. We propose a method for combining
simulation and emulation to improve the scalability of network
experiments. This is achieved first by applying the symbiotic
approach to effectively integrate emulation and simulation for
hybrid experimentation. For example, one can use Mininet to
directly run OpenFlow applications on the virtual machines
and software switches, with network connectivity represented by
detailed simulation at scale. We also propose a method for using
the symbiotic approach to coordinate separate Mininet instances,
each representing a different set of the overlapping network flows.
By effectively distributing network emulation among separate
machines, one can significantly improve the scalability of the
network experiments.

Index Terms—Network emulation; network simulation; sym-
biotic simulation; openflow; software-defined networking

I. INTRODUCTION

During the last ten years, significant advances have been
made in Future Internet Architecture (FIA) design and cyber-
infrastructure development. Large-scale coordinated efforts
(such as [1]–[4]) with bold ideas, innovative and oftentimes
disruptive designs about next-generation networks have been
proposed, in order to provide secure, high-performance, and
ubiquitous services for applications of the future. These efforts
coincide with prominent research trends, such as data center
networking (DCN), software-defined networking (SDN), and
network function virtualization (NFV), and promise emerging
network capabilities, such as deep network programmability,
resource slicing and federation.

Essential to the FIA research is the development of network
testbeds that can validate key design decisions and expose
operational issues at scale. For example, the Global Environ-
ment for Network Innovations (GENI) has been a community-
based effort for building a collaborative and exploratory net-
work experimentation platform for studying future network
applications [5]. Follow-up efforts include various cyber-
infrastructure design, development, and build-out projects,
such as NSFCloud [6], [7], for building mid-scale cloud-
computing testbeds in the U.S. There are similar attempts
made in European Union, Japan, Brazil, and other nations.

While all these efforts would pave the way for the network
researchers (as well as the network engineers) to validate
design and implementation issues directly on the cyber-
infrastructure testbeds, one needs to understand the defi-
ciencies of solely relying on real-world implementation and
physical deployment in network studies. We illustrate this
important issue through a few hypothetical examples:

• A new robust map-reduce algorithm [8] needs to be
evaluated for multi-tenant cloud computing environments.
The performance of the algorithm depends on the job
characteristics (such as the distribution on the number
of jobs and the individual job sizes), as well as the
configuration and stability of the available resources of
the cloud platform. One would find it extremely time-
consuming to explore the entire algorithmic parameter
space on physical testbeds; let alone the highly diverging
cloud configurations. Although, with the availability of
NSFCloud, for example, one can study a few real in-
stances of the algorithm at play with specific parameter
and configuration settings, it is still difficult to extrapolate
the overall robustness of the proposed algorithm.

• A novel enterprise network traffic engineering solution
based on OpenFlow [9], which uses opportunistic traffic
load balancing and multi-path schemes to increase the
throughput of heavy-hitter flows, has been proposed and
evaluated on the existing campus cyber-infrastructure
build-out. The algorithm is shown to be heavily dependent
on an efficient exchange of control-plane information/-
knowledge between the participating ISPs. Important
questions remain unanswered—for example, whether this
algorithm would perform well under strenuous (and of-
tentimes unpredictable) traffic conditions, whether the al-
gorithm would be resilient for situations caused by partial
deployment with varying proportions of non-cooperative
entities, and whether the algorithm could scale out to
a larger number of ISPs beyond the small-scale cases
examined by a physical testbed.

• A data center transport-layer protocol has been proposed
(similar to [10]), which is expected to both reduce flow
completion time and increase data throughput. The al-
gorithm has been implemented and tested in a small-
scale homespun DCN testbed; one needs to know whether
it is ready for deployment in a production data center.
Before that, however, one would like to investigate the



algorithm’s optimal performance conditions for the large
data center with high bisection network capacity and
also with various traffic loads with known stochastic
properties. The challenge is that one cannot test the
algorithm directly on the production data center network.

These examples highlight some of the intrinsic limitations of
cyber-infrastructure testbeds. However useful, they are limited
in scale; it is thus difficult, if at all possible, to reveal scaling
properties and robustness issues. They also lack flexibility: it
is cumbersome and time-consuming to set up experiments to
explore the design and configuration space given the large set
of control parameters and system configurations. One would
also find it difficult to test algorithms and applications beyond
the existing setup of the physical environment. This would in
turn limit the researcher’s ability to investigate network appli-
cations under alternative conditions and ask what-if questions.

The network community obviously needs to overcome these
problems in order to achieve meaningful research. Previously
we conducted a brief survey of SIGCOMM papers from year
2007 to 2013 [11]. We observed that the use of physical
testbeds and simulation accounts for a large proportion of the
evaluative work. Although emulation provides the flexibility
of subjecting real applications under various test scenarios, it
is still limited in scale and in the traffic handling capacity. We
also observed that physical testbeds and simulation are often
used in complementary roles in the evaluative studies. In a
common scenario, a researcher would use simulation (often
a simplistic model) to evaluate the key functions under vari-
ous operating network conditions, and then use a controlled
physical testbed for small-scale real-world studies. In another
common scenario, a researcher would use a physical testbed
to conduct small-scale studies, and then resort to simulation
(again with simplified models) for speculating scaling prop-
erties. There are two problems associated with the popular
approach of using physical testbeds and simulation in isolation.

First, the researchers typically use simplified simulation
models for scalability studies and for exploring diverse sce-
narios and parameter settings. To reduce cost, the algorithm or
the protocol under investigation is represented only in essence;
and the model is usually polished to remove “unnecessary”
implementation details. Simple models usually are not rigor-
ously validated and therefore the results can be questionable.
Second, even if the the target network protocol or application
is faithfully implemented in simulation, it needs to examined
in the context of other coexisting protocols and applications.
For example, an enterprise network traffic engineering solution
can be heavily dependent upon the behaviors of the users and
the characteristics of the prevailing applications. Developing
detailed simulation models for all would be prohibitive.

The above problems call for a method to organically inte-
grate physical testbeds and simulation/modeling for network
experimentation. Whereas physical testbeds provide the real
system environment for evaluating network applications in-
situ with needed operational realism and with live network
traffic conditions, simulation is able to scale to represent large
networks and incorporate complex stochastic models with

flexibility, including, for example, network-wide traffic charac-
terization, user population and mobility, high-level application
behavior and user demand, system failures, and so on.

Previously we proposed a symbiotic approach to combine
both simulation and emulation [12]. We developed a proto-
type that consists of two parts: a simulation system and an
emulation system. We use the simulation system to run the
full-scale network model in real time with detailed network
topology and protocols for a close representation of a target
network. We use the emulation system to inspect the detailed
behavior of the real applications, where a number of nodes
in the target network can be selected as “emulated” nodes to
run unmodified software directly on the virtual machines with
specified operating systems, real network stacks, libraries and
software tools. In this way, simulation and emulation forms
a symbiotic relationship through which each can benefit from
the other. Both systems evolve in real time. The simulation
system benefits from the emulation system by considering real
network traffic generated by the unmodified software directly
executed on real systems. The emulation system benefits from
the simulation system by receiving network updates and using
it to calibrate communication between the real applications. As
a result, the symbiotic approach allows us to test and analyze
applications by embedding them seamlessly in diverse virtual
network settings.

In this paper, we apply the symbiotic approach to im-
prove the capabilities of a specific network emulator, called
Mininet [13], [14]. Mininet is a container-based emulation
environment built for Linux for testing OpenFlow applica-
tions [9]. Using Mininet, one can create network experiments
using a set of virtual hosts and virtual switches connected as an
arbitrary network. Mininet uses the native Linux namespaces
to represent the virtual hosts. It is a lightweight container-
based virtualization solution, based on which one can create
relatively large virtual networks with hundreds and even
thousands of virtual machines on a single physical machine.
The containers can be connected to the instances of the
Open vSwitch (OVS) [15], which is a production-quality
software switch augmented with OpenFlow capabilities for
experimentation with SDN applications.

By implementing the symbiotic approach in Mininet, we
enable large-scale hybrid SDN/OpenFlow experiments. For
example, one can use Mininet to directly run SDN applications
using the virtual machines and software switches controlled
by real OpenFlow controllers. These virtual machines can
be a part of a large-scale network simulated by the network
simulator for representation of diverse network scenarios. This
would allow us to efficiently and accurately incorporate com-
plex network models, such as different network topologies,
network-wide traffic matrices, as well as stochastic models to
describe user demands, mobility, and applications behaviors.

Technically, this paper makes two contributions. First, we
present a specific design and implementation of the symbiotic
construct that can effectively integrate the emulation testbed
with a network simulator so that one can conduct hybrid at-
scale experiments and test applications and algorithms easily



with various system configurations and design parameters.
Second, we present a method for using the symbiotic approach
to coordinate separate Mininet instances to run (with different
virtual machines and switches) on distributed machines with
overlapping traffic on shared links of the target virtual network.
In this case, we can significantly increase the scalability of the
network experiment. We conduct preliminary experiments to
mainly assess the feasibility of our proposed approach.

The rest of the paper is organized as follows. In section II,
we provide the background and discuss existing work related
to physical network testbeds, network emulation and simu-
lation. In section III, we specifically review the symbiotic
simulation approach. In section IV, we describe the design of
our proposed system for incorporating the Mininet emulator
with a high-fidelity real-time network simulator using the
symbiotic approach...

II. BACKGROUND AND RELATED WORK

The ability to conduct high-fidelity network experiments
and allow easy exploration of design space is crucial for
studying future network systems and their complex behaviors.
Existing network testbeds offer different capabilities, in terms
of realism, for reproducing accurate system and network
effects; scalability, for capturing at-scale network operations;
and flexibility, for creating diverse network scenarios.

A. Physical Network Testbeds

Physical testbeds provide a real system environment for
evaluating network applications directly on the testbeds with
the needed operational realism and with live network traf-
fic. Physical testbeds can be further divided into production
testbeds and reconfigurable testbeds. Production testbeds (such
as Internet2 [16] and ESnet [17]) support live network exper-
iments; however, they allow only “safe” experiments that do
not disrupt normal operations, and they provide only a small
and iconic version of the entire internet. Comparatively, recon-
figurable testbeds provide far better flexibility. PlanetLab [18]
is a well-known reconfigurable testbed consisted of machines
distributed across internet and shared by researchers simultane-
ously conducting multiple experiments. An experiment can run
on a subset of machines creating an overlay network (called a
slice). Similar concepts have been adopted by GENI [5], which
is a community-driven research and development effort to
build a collaborative and exploratory network experimentation
platform. GENI capitalizes on the success of previous efforts,
by providing an overarching technology to bring all different
network testbeds together as a single platform for building and
testing new network designs and new technologies fundamen-
tal to future internet.

Recently, there also has been significant investment in
cyber-infrastructure development and build-out for the entire
network research community (e.g., [6], [7], [19]). Physical
testbeds provide realism, but still lack flexibility and scalabil-
ity. Although reconfigurable, it is difficult to test applications
beyond the existing setup and configuration of the underlying
physical environment, which is limited in scale and capacity.

It would be difficult to realize experiments with the number
of nodes significantly larger than the available nodes (either
physical or virtual machines), and with the capacity of inter-
connectivity higher than the available bandwidth.

B. Network Emulation Testbeds

Emulation testbeds support “traffic shaping” by introducing
artificial delays and losses to packets to mimic their experience
of traversing the network routers and links [20]. An emulation
testbed can be built on a variety of computing infrastructures,
including dedicated compute clusters (such as ModelNet [21]
and EmuLab [22]), distributed platforms (such as VINI [23]),
and special programmable devices (such as ONL [24] and
ORBIT [25]). Mininet [13] is also an emulation testbed using
Linux containers and traffic control (tc).

Emulation testbeds provide a good balance between flexi-
bility and realism, whereas real applications can run directly
in a designated operating environment, and traffic between
them can be “shaped” according to the network delay and
bandwidth constraints. However, like physical testbeds, em-
ulation testbeds are also limited in scale and capacity. For
example, we observe that there still exists a stringent limitation
in the amount of traffic that can be emulated in real time. The
aggregate traffic on each physical machine cannot go beyond
a certain rate, which depends on the machine type (typically,
a few gigabits per second). Mininet has also an extension to
allow running on multiple machines in a distributed environ-
ment [26]. However, the traffic between the physical machines
has to be limited by the available connection bandwidth. For
experiments that induce heavy traffic, Mininet cannot produce
reliable results.

C. Network Simulators

Simulation plays an important role in network design and
evaluation. Many network simulators have been developed
in the past, e.g., NS-2 [27], NS-3 [28], OPNET [29], and
OMNeT++ [30]. Parallel simulation is a technique of running
a single discrete-event simulation program in parallel [31]. It
can harness the collective power of parallel computers to run
complex large-scale models and thus can be successfully ap-
plied to increasing the performance and scalability of network
simulations, e.g., SSFNet [32], GTNets [33], ROSSNet [34],
and GloMoSim [35]. Simulation can be effective at capturing
large-scale system design, and answering what-if questions.
Using parallel simulation, one is able to handle large-scale
models. However, simulation often lacks realism and requires
extensive efforts in validation. Developing detailed models is
also known to be labor-intensive.

To deal with these issues, there have been two prominent
methods. One is to directly incorporating protocol implemen-
tations in simulation [36]–[38]. This technique is called direct-
execution simulation, which includes compile-time techniques
(which involve little or only moderate modification to the
source code), link-time techniques (such as using linker wrap-
per functions to replace functions related to communication
and timing), and run-time techniques (such as binary code



modification, preloading dynamic libraries, or using packet
capturing facilities). There are two major issues with this
approach. First, reproducing detailed behavior for all network
protocols and applications in simulation would be too costly
to realize for full-scale network experiments. Second, in cases
where one may desire high-level models, such as random traf-
fic generation and stochastic failures, implementing detailed
network models does not automatically translate to an accurate
representation of high-level behaviors.

Another technique is to allow network simulation to op-
erate in real time so that the virtual network can inter-
act with real network applications. This technique is called
real-time simulation. Most real-time simulators (e.g., [36],
[39]–[45]) are based on existing simulators augmented with
emulation capabilities. To support real-time simulation, the
simulator is modified to be able to regulate the virtual time
advancement; in parallel simulation, the issue becomes an
effective scheduling of the logical processes with respect to
real time [46]. Although real-time simulation allows hybrid
network experiments involving both simulated and physical
network components, the scale of the network experiments is
constrained by the I/O capacity of the simulator for exchanging
network packets with the physical system [47].

III. SYMBIOTIC SIMULATION

Symbiosis is originally a biological term to describe a
type of mutually beneficial relationship between two or more
different organisms. Symbiotic simulation can be defined as
“one that interacts with the physical system in a mutually
beneficial way” [48].

For network experimentation, ROSENET [49] can be seen
as the first attempt to promote the symbiotic relationship
between simulation and emulation. ROSENET combines the
parallel network simulator, GTNetS [33], and the Linux-based
network emulator, NIST Net [50], which can run at a different
location. During the experiment, the network simulator peri-
odically updates the emulator with the link statistics (such as
packet delays, jitters, and packet losses). The network emu-
lator also periodically provides the network simulator with a
summary of the real traffic situation. Experiments have shown
that ROSENET is capable of emulating a single bottleneck link
conducting non-responsive traffic (i.e., UDP traffic) generated
by real applications. We also proposed another symbiotic
approach to more effectively combine simulation and emula-
tion [12]. In the following, we describe this approach in more
detail, which we apply to allow scalable Mininet emulation of
future internet applications.

A network experiment consists of a virtual network with an
arbitrary topology, potentially with a large number of hosts and
routers. For a specific experiment, we can examine a subset of
network protocols and applications by directly running them
on an emulation testbed. Fig. 1 shows an example where the
real applications are running on two physical hosts, H1 and
H2. To test them, we specify a simulated network, which
contains virtual hosts, h1 and h2, that correspond to the
two physical hosts. We “modulate” the real network traffic
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Fig. 1: A symbiotic network experiment.

between the physical hosts using statistics collected from the
simulated network. More specifically, we use a facility, called
the “network pipe”, to represent the sequence of network
queues supposed to be traversed by the real network traffic if it
were placed on the simulated network. The example shows one
network pipe consisted of three simulated network queues: q1,
q2, and q3. (For brevity, we focus only on the forward traffic
from H1 to H2 and ignore the traffic in the reverse direction.)
It is important to know that with symbiotic simulation, the
network packets generated between the physical hosts, from
H1 to H2, do not need to be captured and simulated individu-
ally as in real-time simulation. Instead, the symbiotic system
captures only the traffic demand at the physical hosts and then
sends this information to the simulator so that the simulator
can regenerate the same traffic and model its effect over the
simulated network (e.g., packet delays and losses).

The network pipe is a mechanism used by the emulator to
reflect the traffic conditions in the simulated network so that
the packet delays and losses can be applied to the real traffic.
In [12], we derived a closed-form solution, for which we only
capture the main results below.

In general, let q1, q2, · · · , qn be the list of network queues
in simulation that are supposed to be traversed by the real
network traffic. In simulation, we collect three measurements
for each queue qi and periodically report them to the emulator:

1) We measure pi, which is the average drop probability
due to buffer overflow;

2) We measure λi, which is the arrival rate of the regener-
ated emulated network flow; and

3) We measure wi, the average packet queuing delay.
Once these measurements are propagated to the emulator, we
can calculate the packet drop probability for the network pipe:

p = 1−
n∏

i=1

(1− pi) (1)

And we can calculate the service rate (i.e., the bandwidth) of
the network pipe:

µ =
λp(∆T +W2 −W1)

∆T
(

1 +W1λp −
√

1 +W 2
1 λ

2
p

) (2)

where λp = min1≤i≤n{(1 − pi)λi}, which is the mini-
mum effective arrival rate at all queues; ∆T is the sample



interval (say, 100ms), which is also the interval at which
the simulator updates the emulator with the measurements;
W1 =

∑
1≤i≤n wi is the total queuing delay through the

n queues measured in simulation; and W2 is the average
packet queuing delay through the corresponding network pipe
measured in emulation.

After calculating p and µ, we can apply them at the network
pipe in the emulator, which is essentially a first-in-first-out
queue installed between the physical hosts. The network pipe
will randomly drop packets according to the set probability
p and process packets according to the given bandwidth µ,
which will effectively add queuing delays to the packets as
they go through the network pipe. In this paper, we will show
how to implement the network pipe using the Linux traffic
control (tc) facility.

In [12], we conducted extensive experiments to show that
this symbiotic approach is able to produce accurate results. Us-
ing this approach, we can test the real applications running on
the physical environment with different network scenarios—
such as running on different network topologies, testing with
diverse traffic intensity, and using different workload and
user demand. In this way, we can enable high-fidelity high-
performance large-scale network experiments by combining
both simulation and emulation testbed, using simulation for the
full-scale detailed network representation and using emulation
testbed for directly executing network applications for real. On
the one hand, emulation testbeds can execute real applications,
operate with real systems, accept real input, produce real
output, and respond to real network conditions. They provide
the operational realism and fidelity usually unattainable by
modeling and simulation. On the other hand, simulation is
expedient for constructing and testing models to obtain “the
big picture”, which would be highly valuable especially when
a good understanding of the system’s complex behavior is
absent. Simulation makes it easy for prototyping, for exploring
the design space, for assessing the performance in diverse
network settings, and for investigating what-if scenarios.

IV. MININET SYMBIOSIS

In this section, we discuss our design for integrating the
symbiotic approach with Mininet [13], [14].

A. System Overview

Mininet is a popular container-based emulator for testing
OpenFlow applications. It uses lightweight OS-level virtual-
ization to emulate the hosts. Each virtual host corresponds
to a container attached to a separate network namespace
(a mechanism introduced since Linux kernel 2.6.24). Each
network namespace can contain a virtual network interface
with a distinct IP address along with independent functions
of the TCP/IP stack (such as the kernel routing/forwarding
table). The virtual network interfaces can be connected via
virtual Ethernet links to the software switches (i.e., OVS
instances), augmented with OpenFlow capabilities. An Open-
Flow controller can be connected to the OpenFlow-enabled

 h1

h2 h3

h4r1 r4
r3r2

   

Fig. 2: A target virtual network with emulated traffic identified.

software switches for a full implementation of the software-
defined networking experiment. A significant portion of the
Mininet implementation is a python library to assist the
users to create and maintain the virtual network topology
for emulation. Mininet uses cgroups for scheduling and
resource management so that one can limit the CPU usage for
all processes belonging to each container. Mininet also uses
tc, the Linux traffic control, to control the link properties,
such as link bandwidth, packet delay, and packet loss.

A typical procedure for using the symbiotic approach can be
shown more easily through an example. Our goal is to execute
the target network applications (iperf for a simple example)
in Mininet containers while creating an illusion that these
applications are running on an arbitrary network. Our approach
starts by first having the user to specify a network model,
which includes a simulated network topology (on which the
target real applications are expected to run), as well as network
protocols and applications, and how they are engaged during
the experiment. For example, one can incorporate complex
network topologies with stochastic models for network-wide
traffic generation. Fig. 2 shows a simple virtual network with
four routers connecting many hosts.

Next, the user can identify a subset of hosts to be emulated
in Mininet (we call them emulated hosts). They will be
instantiated as containers and therefore capable of directly
running the target network applications. To reduce overhead,
we also ask the user to identify flows that will be generated
between the emulated hosts during the experiment (we call
emulated flows). This can significantly reduce the facilities that
need to be maintained for symbiosis. In the example shown
in Fig. 2, we specify two emulated flows: one from h1 to h4,
and the other from h2 to h3. Here again, for brevity, we only
show one-directional traffic. Most flows (such as TCP) would
be bi-directional, in which case the user would need to specify
the flows for both directions.

Afterwards, we invoke a process, called downscaling, in
which the original full-scale network simulation model to-
gether with the identified emulation traffic is processed to
produce an reduced emulation model for Mininet. The down-
scaling process first prunes the original network model and
remove all hosts, routers, and links not traversed by emulated
traffic, since they are not needed in emulation involving real
traffic. It then compresses the pruned topology by combining
the intermediate nodes and links visited by the same set
of emulated flows into a single network pipe. For example,
the network segment between h1 and r2 in Fig. 2 can be
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Fig. 3: A downscaled network model to run in Mininet.
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compressed into one network pipe. The downscaled emulation
model (only forwarding portion) of the same example is shown
in Fig. 3, which consists of the four emulated hosts and two
switches, connected by five network pipes.

Our symbiotic system consists of a simulation system and an
emulation system running side by side. The simulation system
is a real-time network simulator (we use PrimoGENI [45] for
our prototype implementation), and the the emulation system
consists of one or more Mininet instances, potentially running
on separate machines (see Fig. 4). Communication between
the real-time network simulator and the Mininet instances is
achieved via TCP connections, whereas the simulator func-
tions as the server and each Mininet instance as a client.
The real-time network simulator runs the original full-scale
network; as such, it needs to implement necessary network
elements (such as routers, hosts, network interfaces and links)
and common network protocols (such as IP, TCP, UDP, and
others). In addition, two components are added to the simulator
to facilitate synchronization with the Mininet instances: a
traffic monitor and a traffic generator. The traffic monitor is
used to collect measurements at each queue qi traversed by the
emulated flows, which include the packet drop probability pi,
the arrival rate of emulated flows λi, and the queuing delay wi.
These measurements are collected periodically every ∆T units
of time and then sent to the corresponding Mininet instances.
The traffic generator receives information from Mininet about
the traffic demand dk from applications for each emulated flow
k in terms of the number of bytes requested to be sent during
the last interval. Upon receiving this information, the simulator
generates the emulated flows by initiating the corresponding
TCP or UDP sessions in simulation with the same demand
size accordingly.

In Mininet, the emulated hosts are instantiated as Linux
containers with separate network namespaces, and the switches
are represented by OVS instances. The virtual Ethernet (veth)
pairs are used to represent the links augmented with the Linux
traffic control (tc) for managing the link properties. Linux
tc is a set of tools (included since kernel 2.2) to allow
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Fig. 5: Downscaled models for two Mininet instances.

users to have fine-grained control over the packet transmission.
Linux tc consists of different queuing mechanisms, easily
composable for handling more complex situations (including
packet mangling, IP firewalling, and bandwidth metering). We
use tc for setting the link bandwidth, the packet delay, and the
random packet loss probability. More specifically, we statically
set the link delay as the cumulative propagation delay of
the links between the consecutive queues that constitute the
network pipe. We modify the packet loss probability and the
link bandwidth dynamically during the experiment using the
measurements from simulation (Equations 1 and 2).

Note that our symbiotic approach can easily support dis-
tributed emulation, where multiple Mininet instances can oper-
ate in parallel, each handling a different set of emulated flows.
For the example shown in Fig. 2, the flow from h2 to h3 can
be emulated in a separate Mininet instance from the one used
for emulating the flow from h1 to h4. The downscaled models
for the two Mininet instances are shown in Fig. 5. Note that
the state of the network pipe, p(r2, r3), is mirrored on both
instances; that is, they will be controlled by the simulator with
the identical link properties.

In the following sections, we discuss the detailed design and
implementation of the symbiotic constructs.

B. Regenerate Emulated Flows in Simulation

A unique aspect of our symbiotic approach, different from
the traditional real-time network simulation method, is that
real network packets in the emulated system that need to
be simulated on the full-scale network do not need to be
captured individually to reproduce the same traffic effect
(in order to calculate their packet delays and packet losses
accordingly). Instead, the symbiotic approach reproduces the
effect of the real traffic flows in simulation by having the
emulation system to capture the interval-based traffic demand
at the traffic source (preferably at the application/transport
interface) and then reproduce the demand traffic using the
corresponding simulated TCP or UDP. In this case, we can
minimize the synchronization overhead between the simulator
and the physical system.

There are several ways to collect traffic demand agnostic
of specific application behaviors. A somewhat complicated
method involves creating a wrapper to a socket library and
collect the read/write and send/receive calls from the appli-
cations right before they invoke the kernel functions. An-
other possibility is to monitor the state of a TCP connection



using the tcpprobe kernel module. One can monitor the
SND.NXT pointer, which represents the sequence number of
the first unsent byte of user data and then calculates the
difference between consecutive packets to estimate the demand
over an interval. The drawback of this approach, however, is
that this demand (taken from consecutive packet departures)
represents a transmission that has already taken place from
the perspective of the transport layer. With zero lookahead for
reproducing the traffic, the system would be sensitive to the
latency between the simulator and the Mininet instances.

Our traffic monitor on Mininet uses a simple and lightweight
solution to capture the traffic demand at each Linux container
(emulated host). We chose to use a tracing tool for the
Linux system calls, called strace. One can use strace
to collect the traffic demand at the interface between the
applications and the transport layer. Network system calls—
such as connect, accept, read and write, and others—
invoked by applications running inside the containers can be
captured and parsed continuously to arrive at the application
traffic behavior. The following shows a snippet of the strace
output for running iperf data transfer inside a container. We
can see that the connect system call from process 15742
(which is the iperf process) established a TCP connection
with another container with the IP address 10.0.0.2. The
subsequent system calls to write indicate the request to send
131,072 bytes of data each time via the TCP connection.

[pid 15742] connect(3, {sa_family=AF_INET,
sin_port=htons(5001), sin_addr=
inet_addr ("10.0.0.2")}, 16) = 0

[pid 15742] write(3, ... 131072 <unfinished ...>
[pid 15742] <... write resumed> ) = 131072
[pid 15742] write(3, ... 131072) = 131072
[pid 15742] write(3, ... 131072 <unfinished ’...>

All socket-related system calls can be captured in this
way. For certain system calls, such as write , we need to
distinguish the calls handling data transmissions over sockets
from those handling regular file IOs. This can be achieved
by checking the state of the file descriptor of a process in
the Linux /proc system. For example, the information for
the iperf process can be located at /proc/15742/fd/3.
Each container in Mininet starts with a bash shell. To speed
up the process, we can cache the lookups for child processes
spawned from the container’s bash process, so that one can
quickly identify the connections used by the applications
running by a child. The use of strace is indeed lightweight.
In our prototype, we found that the overhead is only around
1% CPU per container.

Once the demands are received, in order to generate the
same amount of simulated traffic, we instantiate a “symbiosis
application” at each of the emulated hosts at the start of the
simulation. For each emulated flow, the symbiosis application
at the sender host creates a socket connection (either a TCP
or UDP session) with the receiver also at the start of the
simulation. During the experiment, upon receiving an updated
traffic demand from the emulator, the simulator simply issues
a send command with the same size for the corresponding

session at the sender host. Note that in order to preserve
the same traffic behavior, the real-time network simulator
must support the same set of TCP variants commonly used
in the physical platform. PrimoGENI contains fourteen TCP
variants that can be found commonly in use today, including
New Reno, BIC, CUBIC, and others. These TCP congestion
control mechanisms have been previously ported from the
Linux implementation and have been tested extensively [51].

C. Actuate Network Pipes

As mentioned earlier, the simulator is instrumented to gen-
erate the queuing statistics at the simulated network interfaces
that constitute the network pipes, including the packet loss
probability, the packet arrival rate, and the average queuing
delay. These measurements are distributed periodically to the
corresponding Mininet instances that handle the network pipes.

The network pipes are created with Linux tc using the
specific token bucket queuing disciplines. The delay of a
network pipe is fixed at the the system configuration; the
value is the total propagation delay of the network links
that constitute the network pipe in the simulation model. The
packet drop probability and service rate need to be changed
during the experiment. It is important that, once the simulation
measurements reach the Mininet instances periodically (say
every 100ms), it is necessary to change the corresponding
tc link properties immediately so that the real traffic flows
can reflect the traffic conditions in the simulated network. In
Mininet, we created a separate thread to receive the periodic
updates from the simulator: (pi, λi and wi), for each simulated
queue qi traversed by the emulated flows.

The packet drop probability can be applied directly using
the replace primitive in tc. Using tc replace is fast
and convenient. To verify its effectiveness, we tested by
executing the tc show command immediately after applying
replace primitive. We did not notice any degradation in
traffic performance for all experiments we performed even
with update small update intervals.

In order to apply Equation (2) to calculate the new service
rate, we need to measure the average packet queuing delay,
W2, through the network pipe. Directly measuring the packet
queuing delay by packet can be costly. Instead, we can esti-
mate the average queuing delay by sampling the instantaneous
queue length gathered from the tc statistics. We created a
collector mechanism that obtains the relevant values from the
kernel. Since these values are constantly monitored for the
Linux queues in any case, the collector presents no additional
overhead. In particular, we capture instantaneous queue lengths
in bytes at smaller sample intervals (say, one tenth of the
update interval used to synchronize simulation and emulation).
We accumulate the samples and average them over the update
period. The resulted average queue size is then divided by
the service rate to produce the estimated average queuing
delay W2. Finally, we can apply Equation (2) to calculate the
new service rate. Again, we use tc replace to update the
network pipe.



V. PRELIMINARY EXPERIMENTS

We conducted experiments to test our design using a pre-
liminary implementation. We first study the effectiveness of
the mechanisms for reproducing the emulated traffic demand
in simulation. In particular, we aim to examine whether the
real traffic demand from the virtual machines can be captured
accurately by our traffic monitor in Mininet, and whether the
new traffic generator module in the simulator can faithfully
reproduce the same flows in a timely fashion.

We used a simple dumbbell model, similar to the one
shown in Fig. 3. We set the bandwidth of the “bottleneck”
link connecting the two routers to be 10 Mbps, and all
other “spoke” links to be 1 Gbps. The bottleneck link has
a propagation delay of 15 ms while the spoke links all have
a propagation delay of 1 ms. We ran the real-time simulator
and the Mininet instances on separate machines connected via
a gigabit network.

In the first experiment, we manually created two TCP flows
using iperf one after another with only a few seconds
in-between. The two flows were generated from the same
emulated host on one side of the dumbbell to a fixed host
on the opposite side (thus traversing the bottleneck link). We
ran tcpdump to capture the packets at both the sender and
the receiver, and therefore used the TCP sequence numbers
to measure the traffic situation in Mininet. We compare them
against the corresponding traffic regenerated in simulation.

We started by using one second as the interval for synchro-
nizing the simulator and the emulator; it’s at least one order
of magnitude higher than the network latencies one would
normally observe over the wide-area network. The result is
shown in the left plot of Fig. 6. The staircase behavior of the
simulated traffic is due to the large synchronization interval.
The traffic demand from Mininet is only reported to the
simulator once every second. As a result, the simulator tried to
replay the entire one second worth of traffic at the beginning
of each interval. Despite this artifact, however, the simulated
traffic is shown to be able to track the real traffic quite well.

Next we reduced the synchronization interval from one sec-
ond to 100 ms and performed the same experiment. The result
is shown in the right plot of Fig. 6. The previous staircase
behavior of the simulated traffic is no longer apparent. We
observe that the simulated traffic can still match with the real
traffic, however with a slight decrease in its transfer rate. This
is due to an issue with the simulator’s traffic generator. In the
original design, we extended a simple server-client model in
the simulator, where a request message has to be sent from the
client to the server, which would cause a slight delay before
the data transfer can be effectuated. There are also additional
overhead related to the choice of using a smaller segment size
for TCP. We are redesigning the simulation traffic generator
to remove these problems.

In the next experiment, we studied the effectiveness of our
traffic control mechanism in Mininet. In this experiment, we
started a long-term TCP flow between two virtual machines
using iperf. The two virtual machines were connected

directly through a virtual Ethernet pair (veth). We used the tc
commands to regulate the bandwidth of the link in-between
by randomly selecting a bandwidth from a set of values: 1
Mbps, 10 Mbps, 100 Mbps, and 1 Gbps.

We changed the bandwidth every second or every 100 ms
and measured the average TCP throughput at the correspond-
ing time intervals. Fig. 7 shows the results from a randomly
chosen time period during the experiment. The left plot shows
the results for changes at one second intervals. The average
TCP throughput responds well to the bandwidth changes,
except for a few instances (at time 33 and 36 seconds) when
the bandwidth is drastically reduced from 1 Gbps to 1 Mbps.
tc uses token buckets for regulating the packet transmission
over the link; the higher than expected throughput is probably
due to the backlog. The right plot of Fig. 7 shows the results
for changes at 100 ms intervals. The TCP throughput does not
seem to track the bandwidth changes as well as in the previous
case. This means that regulating the bandwidth at the 100 ms
time scale may introduce nontrivial inaccuracies.

VI. CONCLUSION AND FUTURE WORK

Symbiotic simulation provides a promising tradeoff, by
combining the emulation testbeds, which can feature a more
realistic environment for running network applications, and
simulation, which can provide more flexible, large, and com-
plex network scenarios. In this paper, we outline a specific
design of combining instances of a popular network emulator,
called Mininet, with a real-time simulator, called PrimoGENI.
We provide a detailed account on the use of low-level mecha-
nisms for implementing the symbiotic approach in the Linux
environment.

This paper provides a feasibility study while we currently
undergo a full-scale implementation. Our immediate future
work is to study the overall effectiveness of our symbiotic
method. In particular, the simulator shall be able to connect
with multiple Mininet instances to support large-scale exper-
iments. We would like to apply the symbiotic approach to
studying bandwidth-intensive OpenFlow applications, which
would otherwise be difficult to realize in the traditional simu-
lation or emulation testbeds.
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