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Abstract—Ground-based Wide-Angle Camera array (GWAC)
is a short time-scale survey telescope that can take images
covering a field of view of over 5, 000 square degrees every
15 seconds or even shorter. One scientific missions of GWAC
is to accurately and quickly detect anomaly astronomical events.
For that, a huge amount of data must be handled in real time.
In this paper, we propose a new time series analysis model,
called DARIMA (or Dynamic Auto-Regressive Integrated Moving
Average), to identify the anomaly events that occur in light
curves obtained from GWAC as early as possible with high
degree of confidence. A major advantage of DARIMA is that
it can dynamically adjust its model parameters during the real-
time processing of the time series data. We identify the anomaly
points based on the weighted prediction result of different time
windows to improve accuracy. Experimental results using real
survey data show that the DARIMA model can identify the first
anomaly point for all light curves. We also evaluate our model
with simulated anomaly events of various types embedded in the
real time series data. The DARIMA model is able to generate
the early warning triggers for all of them. The results from the
experiments demonstrate that the proposed DARIMA model is
a promising method for real-time anomaly detection of short
time-scale GWAC light curves.

Index Terms—Light curve; ARIMA; real-time analysis; big
data processing; anomaly detection

I. INTRODUCTION

Aided by modern instruments, today’s astronomy is capable
of collecting a large amount of high-resolution data. This large
amount of data often needs to be processed and analyzed in
real time, for example, for online classification and anomaly
detection. The sheer volume of the astronomical data and the
speed at which the data needs to be analyzed can easily stretch
the limitations of today’s computing and storage capabilities.

A case in point is the time domain astronomy [1], where
large datasets are generated by sky surveys and represented as
time series data. We use the time-series data generated by the
ground-based wide angle camera arrays in the Space-based
multi-band astronomical Variable Objects Monitor (SVOM)
mission as an example. SVOM is a joint space mission
between the Chinese National Space Agency (CNSA), the
Chinese Academy of Science (CAS), and the French Space
Agency (CNES). It is aimed at studying Gamma-Ray Bursts
(GRBs) in the next decade [2]. The mission is expected to
launch in 2021 and will consist of a medium-size satellite,
which carry instruments for detecting and localizing GRBs

and measuring GRB afterglows (including two wide field high-
energy instruments and two narrow field telescopes), together
with a ground segment that consists of a ground-based wide
angle optical camera array and two follow-up telescopes.

The Ground-based Wide Angle optical Camera array
(GWAC) in SVOM will be used to survey a large field of
view for optical transients, before, during and after GRBs. The
system consists of 36 wide angle cameras, each with 18 cm in
diameter, 22 cm focal length, and 4k×4k CCD detectors, that
are sensitive in the 400-800 nm wavelength range. Altogether,
the camera array can take images capable of covering a field
of view of over 5, 000 square degrees.

GWAC can produce light curves with high time resolution
of millions of objects [3]–[5]. A light curve is a time series
of light intensity of a celestial object or region. Many astro-
nomical objects exhibit brightness variability due to different
physical processes. The light curve therefore can be used in
classification of variable objects, such as variable stars and
eclipsing binary. To generate light curves, one needs to process
the images in a pipeline that includes steps, such as source
extraction, flux calibration, source association.

Once light curves are generated, they can be analyzed for
online classification and anomaly detection [6]–[8]. For exam-
ple, the light curves can be used to detect special astronomical
phenomena caused by abnormal brightness warning from
transient phenomena, such as short time-scale gravitational
microlensing and transits by extrasolar planets. The GWAC
camera array can take an image once every 15 seconds
(including 10 seconds for exposure and 5 seconds for read-
out). Consequently, it can generate a large amount of data, at
a rate of 85 MB/s and having more than 6 million sources,
which needs to be processed for online anomaly detection.

GWAC is the first short time-scale survey telescope in the
world. Existing time-series analysis methods for handling real-
time data are limited, given the amount of data processing
demand as well as the specific properties of astronomical
light curves for anomaly detection. The contribution of this
paper can be summarized as follows: (1) We propose an
improved time-series analysis method, called DARIMA, which
can dynamically adjust its model parameters during real-time
processing; (2) We propose a method for anomaly detection of
special astronomical events using data from different time win-



dows to calculate the weighted value for identifying anomaly
points; and (3) We evaluate the DARIMA model with real
light curves and also simulated anomaly events embedded
in light curves to demonstrate that our method can quickly
and correctly identify all the anomaly points. The proposed
DARIMA model is a promising method for real-time anomaly
detection of short time-scale GWAC light curves.

The rest of the paper is organized as follows. In Section II
we provide the background information. We present the detail
of the proposed dynamic auto-regressive integrated moving
average model for real-time time-series analysis in Section III.
We evaluate the effectiveness of the our model and present
the results in Section IV. Finally we conclude the paper in
Section V.

II. BACKGROUND

Astronomy is immensely rich with data. Observations, such
as sky surveys, can generate and archive enormous quantities
of data, which may reach tens or hundreds of terabytes, with
billions of detected sources, each with hundreds of measured
attributes. Data mining is the technique used for converting
the observed data into useful information, which can then be
interpreted with theory or hypothesis, and used for knowledge
discovery.

A. Time-Series Data Mining Methods for Astronomy

Many tasks have been considered for mining time series
data, including indexing (i.e., query by content), clustering,
classification, prediction (forecast), summarization, anomaly
detection, and segmentation [9]. Prediction, in particular, aims
at forecasting future values from past and current data based
on historical trends and statistics. In comparison, anomaly
detection is to identify previously unknown patterns in data
that deviate from “normal” observations. Many techniques can
be used for time series forecast and anomaly detection. Some
of the major methods are discussed below:

• Support Vector Machine (SVM) is a supervised learning
algorithm used for classification and regression analy-
sis [10]. It has been shown to be effective for pattern
recognition of non-linear and high-dimension data with a
small sample size.

• Random Forest is an ensemble learning algorithm, which
constructs multiple decision trees during training and
uses the mode or mean output for classification and
regression analysis [11], [12]. The method runs efficiently
on large databases and is effective in estimating missing
data and balancing errors from unbalanced datasets. It is
also useful for feature selection in addition to being an
effective classifier. As such, it can play an important role
as a part of general ensemble methods that can combine
the predictions from several base estimators and improve
the robustness of a single estimator.

• Artificial Neural Network (ANN) is the most widely used
machine learning algorithm [13], [14]. The algorithm
constructs a series of interconnected nodes organized in
layers with weighted connections. Each node is associated

with an activation function (such as sigmoid with a simple
threshold). The weights of the connections are adjusted
by the training algorithm. Back propagation is one of the
best known training algorithms. ANN is very effective at
estimating non-linear relationships within the data, and
has been used widely in pattern recognition, voice recog-
nition, intelligent control, and nonlinear optimization, and
has recently found significance in deep learning.

• Auto-Regressive Moving Average (ARMA) model is an
import statistical method for specifically analyzing time-
series data and for predicting future values. The ARMA
model considers the time series as a stochastic process
which can be described as two polynomials, one for
the auto-regression (AR) and the other for the moving
average (MA). The AR component is the linear combi-
nation of observable values while the MA component is
the linear combination of the unobservable white noise
disturbance terms. The ARMA model assumes that the
time series is a stationary stochastic process. If the time
series is not stationary, a technique called differencing can
be applied to transform the non-stationary time series to
a stationary one. The combined method is called ARIMA
(Auto-Regressive Integrated Moving Average).

All the data mining methods mentioned above can be
applied for time-series data. We develop our method based
on ARIMA for processing the astronomical light curves. We
extend the ARIMA model for real-time prediction and for
anomaly detection. We first discuss the ARIMA method in
more details in the next section.

The light curve analysis focuses on examining the photo-
metrically obtained light intensity of a celestial object, which
we call the light source. Light curve analysis is very common
in astronomy. For example, Harikrishnan et al. [6] studied
the black hole system GRS 1915+105 using nonlinear time
series analysis of the light curves, including the correlation
dimension, the correlation entropy, singular value decomposi-
tion, and the multifractal spectrum. Tarnopolski [7] attempted
to estimate the maximal Lyapunov Exponent (mLE) from
light curves of Hyperion, Saturns seventh moon. McWhirter
et al. [8] proposed a data processing framework designed
to utilize multiple intelligent agents that can be distributed
across multiple machines. The intelligent agents conduct time-
domain analysis of the time-series light curves of astronomical
objects for automated classification. In this paper, we propose
a method for analyzing light curves for fast and accurate
anomaly detection and early warning so that more compu-
tationally intensive processing can follow up and be applied
for specific objects at specific time.

B. ARIMA

Auto-Regressive Integrated Moving Average (ARIMA)
models is a forecasting technique that projects the future
values of a series based entirely on the observed values in
the past. The main application of the ARIMA model is in
short-term forecasting and can generally work well when the
time-series data exhibits a consistent pattern over time with a



minimum amount of outliers. ARIMA is also called the Box-
Jenkins approach, named after its original authors George P.
Box and Gwilym Jenkins [15].

The basic idea behind ARIMA is to consider the time series
as a stochastic process. ARIMA extends the Auto-Regressive
Moving Average (ARMA) model, discussed in the previous
section, by applying the differencing method to the original
data series. The first step in applying ARIMA is to check
for stationarity. A random variable that is a time series is
stationary if its statistical properties are constant over time.
In other words, a stationary stochastic process has no trend,
and its variations have a constant amplitude. The short-term
random time patterns remain the same in a statistical sense.
That is, its autocorrelations remain constant over time.

If the time series does not seem to be stationarity, we
can transform a non-stationary series to a stationary one by
applying “differencing”, that is, by subtracting the observation
in the current period from the previous one. Applying this
transformation once (“first differencing”) can eliminate the
trend of the data if the series is growing at a fairly constant
rate. Applying this transformation the second time (“second
differencing”) if the series is growing at an increasing or
decreasing rate. Such transformation can be applied more
times if so necessary.

After stationarization, ARIMA can then describe the move-
ments in the derived stationary time series using ARMA.
Consider a time series data Xt where t is an integer index
and the Xt’s are real numbers. The derived time series Yt are
the differenced values of the original series Xt. The parameter
d is the degree of differencing needed for stationarity. If
d = 0, Yt = Xt; if d = 1, Yt = Xt − Xt−1; if d = 2,
Yt = (Xt −Xt−1)− (Xt−1 −Xt−2) = Xt − 2Xt−1 +Xt−2;
and so on.

The ARIMA forecasting equation for the “stationarized”
time series Yt is a linear equation in which the predictors con-
sist of lags of the dependent variable and lags of the forecast
errors. More formally, the general forecasting equation can be
described as follows:

Ŷt =

p∑
i=1

βiYt−i + Zt (1)

And the error term Zt can be described as follows:

Zt = εt +

q∑
j=1

αjεt−j (2)

where β1, β2, · · · , βp are auto-regressive parameters,
α1, α2, · · · , αq are moving average parameters, and εt’s are
independent identically distributed error terms with zero
mean.

This model is called ARIMA(p, d, q) model of Xt, where
p, q, and d are non-negative integers: p is the order of the
autoregressive (AR) model, or the number of lagged values of
Yt; q is the order of the moving-average (MA) model, or the
number of lagged values of the error term; and d is the degree
of differencing, i.e., the number of times the data have had
past values subtracted.

The parameters of the ARIMA model can be determined
empirically. To determine d, one needs to test the stationarity
of the time series. If the original series is stationary, we set
d = 0. Or, we increase d until stationarity is satisfied. To
determine stationarity, we can first simply visualize the time
series to identify the existence of possible patterns, trends,
cycles and seasonality in the data. We can also test the
stationarity using the Dickey-Fuller test. Stationary testing
and converting a series into a stationary series are the most
important steps using the ARIMA model.

There is a systematic approach for determining the values
of p and q used in the equation for predicting the stationarized
series Yt. An easy approach is based on inspecting the plots
of the autocorrelations and partial autocorrelations of the
series. One can inspect ACF and PACF plots and look for
a clear AR or MA signature. Several well-known formal
criteria have also been developed for the order selection, which
include the Akaike’s Information Criterion (AIC) [16], the
Bayesian Information Criterion (BIC) [17], and the Hannan-
Quinn Criterion (HQC) [18]. These criteria are alternative
ways for order selection. They introduce a penalty term for the
number of parameters being estimated in the model. In general,
more parameters would suggest more complicated models. The
penalty term is in place so that, for a given level of “fit”, a
more parsimonious model is preferred over a more complex
model. Changing the form of the penalty term gives rise to
different information criteria.

III. DARIMA

ARIMA is a powerful forecasting model for time series data
and can be especially effective for analyzing astronomical data.
In this paper, we make changes of this forecasting model to
improve its effectiveness for real-time analysis and anomaly
detection.

Our goal is to use the improved model to analyze the light
curves generated from GWAC once it is fully implemented. To
illustrate the effectiveness of our approach, we use real dataset,
called mini-GWAC, which is obtained from the National
Astronomical Observatories of China. In particular, we focus
on a subset of the data containing three days of observations
of 978 astronomical objects. In this paper, we illustrate the
results of an object with the catalog ID (catID) of 1114 as an
example.

An important step in the traditional ARIMA model is to
determine the parameters. However, once these parameters
are determines, they cannot be adjusted dynamically. ARIMA
uses the differencing technique to remove the obvious patterns,
trends, cycles and seasonality in the data. The result time series
data is supposed to be stationary—the statistical properties of
the time series (e.g., autocorrelations) are expected to remain
constant over time. This assumption, however, may not be
always true if we deal with real-time analysis of data for
forecasting and anomaly detection. In this case, the model
needs to adapt to the possible shifts in the dataset over time.

To deal with this problem, we propose an improved model,
which we call Dynamic Auto-Regressive Integrated Moving



Average (DARIMA). The model compares the Bayesian In-
formation Criterion (BIC) value of different parameters, p and
q, and uses the most appropriate ones in forecast model during
the next step. We compute the parameters continuously every
time when the data is updated so that the model is able to
keep track of the changes in the time series data.

GWAC can produce an image every 15 seconds; the image
is fed to a pipeline for preprocessing, quality control, source
extraction, flux calibration, source association, and eventually
light-curve creation. A light curve is a time series of light
intensity of a celestial object or region. The dynamic ARIMA
model is applied to analyze this time series in real time in
order to detect sudden changes in the light source, which can
signify special astronomical phenomena, such as gravitational
microlensing or transits of extrasolar planets. Anomaly detec-
tion in the light curves serves as a precursor to more intensive
data processing needed for these special astronomical events.

In the remainder of this section, we describe the important
steps of the DARIMA time-series analysis of the GWAC light
curves for anomaly detection.

A. Stationarity Test and Order Determination

There are two ways to check the stationarity of the time
series data: one way is through visual inspection of the relevant
plots, and the other way is via formal statistical tests. The
former method is simple and straightforward and however is
subjective to interpretation. The latter method is comparatively
more complicated and yet can provide a more objective and
statistically definitive answer.

The easiest method for checking stationarity is to visualize
the time series plot. Non-stationary series typically shows
patterns, trends, or seasonality in the time series plot. The
mean and variance of a stationary series should be constant,
as opposed to changes that depend on time.

Another visual method is to inspect the correlations of
the time series using the ACF and PACF plots. The Auto-
Correlation Function (ACF) plot shows the autocorrelation
coefficients at different lags. The autocorrelation of the time
series Xt at lag k is the correlation between the time series
and itself lagged by k periods, i.e., it is the correlation between
Xt and Xt−k. The Partial Auto-Correlation Function (PACF)
plot shows the partial autocorrelation for different lags. The
partial autocorrelation of Xt at lag k is the coefficient of lag k
in a regression of autocorrelation of Xt at lag 1, lag 2, ..., and
up to lag k. One way to interpret the partial autocorrelation
at lag k is that it is the amount of correlation at lag k not
explained by lower-order autocorrelations. A stationary series
should only show short-term correlations (with small lags).
The correlation decreases rapidly for larger lags, although it
may wiggle around zero randomly. The correlation for a non-
stationary series may also decrease but at a much slower rate.

We show an example light curve in Fig. 1. From the time
series plot, we see that there are no obvious trends or cycles.
Fig. 2 shows the autocorrelation function. The coefficients
drop sharply at small lags and remain small around zero as
the lag increases. It appears that the time series is stationary.

Fig. 1. Time series data of a light curve.

Fig. 2. Autocorrelation of the original time series.

One way to determine more objectively the stationarity of
a time series is to use a unit root test. These are statistical hy-
pothesis tests designed to check the stationarity and determine
whether differencing is necessary. There are a number of unit
root tests available and the Augmented Dickey-Fuller (ADF)
test is the most popular test [19]. The null-hypothesis for an
ADF test is that the time series is non-stationary. Large p-
values are indicative of non-stationarity, and small p-values
suggest stationarity. If 5% is the threshold, differencing is
required if the p-value is greater than 0.05.

We apply ADF unit root test for the mini-GWAC data. The
following shows the results:

adf: -2.9258175081947511
pvalue: 0.04242709158188341
usedlag: 18
nobs: 581
critical values (10%): 2.5694261699959413
critical values (5%): -2.8665274458710064
critical values (1%): -3.4416553818946145



We observe that the ADF value is less than 5% and the
p-value is less than 0.05. That is, the data is stationary.
Furthermore, we test the white noise errors. The results is
9.04803104e-123. The p-value is much smaller than 0.05; the
data is not white noise. Therefore we can conclude that the
time series is mostly stationary with white noise errors, and
therefore can be analyzed using the ARIMA model. Note
that since the original time series of the light curves data
is stationary, there is no need to apply differencing. In our
analysis, we set d = 0.

From the ACF and PACF plots, we can also determine
the other ARIMA parameters. There are explicit rules for
determining the parameters p and q by looking for specific AR
or MA signatures in the plot of autocorrelations and partial
autocorrelations as a function of the lag. For example, we
choose the AR(p) model, if the PACF plot cuts off after p
lags but the ACF plot decreases gradually; we choose MA(q)
model, if the PACF plot decreases gradually but the ACF plot
cuts off after q lags. If both ACF and PACF plots tail off, we
can choose different combinations of p and q such as either
Akaike’s Information Criterion (AIC) [16] or the Bayesian
Information Criterion (BIC) [17] has the lowest value.

In our study we use BIC. BIC is a criterion for model
selection, and in our case, for measuring the efficiency of
the parameterized model in terms of predicting the data. BIC
is based in part on the likelihood function. When fitting
models, it is possible to increase the likelihood by adding
parameters, but in doing so we may cause over-fitting. BIC
has a penalty term that penalizes the complexity of the model,
where complexity refers to the number of parameters in the
model. We choose p and q so the BIC value is minimized.

B. Window Size Selection

In this paper, we use ARIMA to analyze light curves for
forecasting and anomaly detection so as to provide early
warning of special astronomical phenomena. It is therefore
important to ensure accurate forecast and early warning.
Selecting proper window size may affect the accuracy of the
forecast and detection. In this section, we compare the effect
of typical window sizes on the accuracy of the prediction.
A window here suggests the length of the data we use for
predicting the next data.

Table I shows the forecast errors—the min, the max, the
mean and the variance, for three window sizes: 10, 50, and
100. From the table, we can see that the window size 50 is
better than others. Therefore we use this window to predict
the data.

C. DARIMA for Early Warning Anomaly Detection

Once we have determined the parameters for the ARIMA
model, we apply the dynamic ARIMA method for early warn-
ing anomaly detection. Our goal is to detect short time-scale
astronomical anomalies, such as gravitational microlensing,
and provide early warning so as to introduce further processing
necessary to analyze the specific astronomical anomalies.

Gravitational microlensing is an astronomical phenomenon
caused by gravitational lens effect [20]. According to Ein-
stein’s general theory of relativity, a massive object can bend
the light of a bright background object (a distant star or
quasar) due to its gravitational field, and, as a result, can
generate a distorted, magnified, and brightened image of the
background source. Since microlensing observations do not
rely on radiation received from the foreground object, it allows
astronomers to study objects regardless of their light emission.
It is thus an ideal technique to study faint or dark objects, such
as brown dwarfs, red dwarfs, planets, and black holes.

Compared to the galaxy-scale gravitational lens effect (for
galaxies or galaxy clusters), in which case the displacement
of light by the lens can be resolved using high-resolution
telescopes, such as the Hubble Space Telescope, with mi-
crolensing, the foreground objects (a planet or a star) make
up only a minor portion of the mass for the displacement of
light to be observed easily.

A microlensing event is also a transient phenomenon (in
seconds to years in human time-scale as opposed to millions
of years), the duration of which depends on the mass of the
foreground object as well as on the relative proper motion be-
tween the background and background objects. A microlensing
event can be detected in the sudden rise and fall of the source
brightness in the light curve.

In our study, we focus on anomaly detection and early
warning of gravitational microlensing. Every time we apply
the prediction model, we make a prediction of values for 5
times after the current time. It can make the predicted value
more accurate. They are stored and compared with the real
light curve data that arrives continuously. We calculate the
average prediction error and compare it with the maximum
prediction error during the previous time window in order to
determine whether significant deviation has occurred and if so,
we treat it as an astronomical anomaly.

IV. EXPERIMENT RESULTS

We apply our DARIMA model on the real time series data
from the mini-GWAC dataset. Fig. 5 shows the light curve
from a particular light source (catID=1114) on October 13,
2015, which contains two potential anomalies, one around the
time slot 570 and the other around 790.

The result of our anomaly detection using DARIMA is
shown in Fig. 6. The blue dots show the original time series
and the red dots indicate the triggered warnings. Our model
was able to detect the anomaly correctly.

The mini-GWAC data contains real anomalies and yet is
limited in the number of occurrences and their diversity.
We would like to test the robustness of our approach under
various situations. To do that, we use the original time series
from mini-GWAC and artificially insert four different types
of functions—a sine curve, a tangent curve, a line, and
an impulse—into the original time series. Fig. 3 shows an
example of the artificially inserted anomalies. This method is
particularly useful for generating different anomaly situations.
It can also be considered reasonably realistic as it is based on



TABLE I
THE EFFECT OF DIFFERENT WINDOW SIZES ON PREDICTION ERROR

Window Size Max Min Mean Variance
10 2.263295984 7.1222617e-05 0.0698544648116 0.0397617623294
50 2.395200678 1.3391953e-05 0.0636541312058 0.0365042456634
100 2.440352563 1.4721013e-05 0.0668715443695 0.0407274415606

Fig. 3. Mini-GWAC time series with simulated anomalies.

the observation that, for the astronomy data we are interested
in, the obtained light curves are mostly stationary, especially
for invariable stars.

The results of the anomaly detection using our dynamic
ARIMA model are shown in Fig. 4. Again, the blue dots
are the original time series and the red dots are the triggered
warnings. Our model was able to correctly detect the on-ramp
of the anomalies. This would be sufficient for the purpose
of early warning. The forecast also generated a few false
positives. In this situation, it is possible that one can apply
astronomy domain knowledges and use additional default

thresholds to filter out or reduce these occurrences according
to the particular situation.

V. CONCLUSION

This paper proposed a novel real-time anomaly detection
model to analyze and forecast the data generated by mini-
GWAC. The dynamic feature makes it possible to predict
different kind of anomalies appeared in the light curves at
different time periods. Experiments show that the DARIMA
model can effectively predict the abnormal events in light
curves, and can generate warning triggers in the very early
stage of an abnormal events.



Fig. 4. Anomaly detection results of the simulated time series.

Fig. 5. Mini-GWAC time-series data with anomalies.

In the future, we plan to evaluate the DARIMA model with
the GWAC data when GWAC is ready to operate on line.
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