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In a moving train, the acceleration and deceleration adversely effects the sensor systems, which may induce errors
into the system. Todays technology does not guarantee success and safety in all situations. There are two important

situations that are critical for the safety of passengers when embarking and disembarking. Distributed sensing

networks needed to control the train doors require a fusion of the sensor inputs to provide accurate automatic
opening and closing with minimum traction. Brooks-Iyengar Distributed Sensing algorithm can be used to provide

a fault tolerant automatic sensing platform for closing doors based on the following scenario. An automatic sensor

network can be installed in the motor circuit to collect current data through a wireless protocol. The data can be
transmitted by cellular communication to servers, where the Brooks-Iyengar distributed sensing algorithm can be

applied to identify and categorize the data signals to safely and automatically open and close the doors. This paper

describes the performance evaluation of the signal output of Brooks-Iyengar algorithm in this application. Based
upon the performance results, the Brooks-Iyengar Algorithm provides the best robust algorithm for implementation

under faulty sensor conditions, such as those encountered in real-world transportation applications.
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1. INTRODUCTION

The Brooks-Iyengar hybrid algorithm (Brooks and Iyengar, 1996) for distributed control in the
presence of noisy data combines Byzantine agreement with sensor fusion. It bridges the gap
between sensor fusion and Byzantine fault tolerance (Ilyas, Mahgoub, and Kelly, 2004). The
algorithm is fault-tolerant and distributed. It could also be used as a sensor fusion method. The
precision and accuracy bound of this algorithm have been proved in 2016 (Ao, Wang, Yu, Brooks,
and Iyengar, 2016). This seminal algorithm unified these disparate fields for the first time.
Essentially, it combines Dolevs algorithm for approximate agreement (Dolev, 1981)(Lamport,
Shostak, and Pease, 1982)(Dolev, Lynch, Pinter, Stark, and Weihl, 1986)(Lamport et al., 1982)
with Mahaney and Schneiders fast convergence algorithm (FCA) (Mahaney and Schneider, 1985).
Researchers have also extended the original Byzantine agreement to Byzantine Vector Consensus
(BVC) (Vaidya and Garg, 2013)(Mendes and Herlihy, 2013). The algorithm assumesN processing
elements (PEs), τ of which are faulty and can behave maliciously. It takes as input either
real values with inherent inaccuracy or noise (which can be unknown), or a real value with
a priori defined uncertainty, or an interval. The output of the algorithm is a real value with
an explicitly specified accuracy. The algorithm runs in O(NlogN) where N is the number of
PEs. It is possible to modify this algorithm to correspond to Crusaders Convergence Algorithm
(CCA) (Mahaney and Schneider, 1985), however, the bandwidth requirement will also increase.
The algorithm has applications in distributed control, software reliability, and high-performance
computing (Mahaney and Schneider, 1985), and can be used to find the “fused” measurement of
the weighted average of the midpoints of regions (Sahni and Xu, 2005).

The Brooks-Iyengar algorithm has been used in a variety of redundancy applications (Kumar,
2012) (Ao et al., 2016)(Brooks and Iyengar, 1996) , including a program demonstration through
the US Defense Advanced Research Projects Agency (DARPA) with BBN using the Sensor In-
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formation Technology for the War Fighter (SensIT) program. SensIT program develop software
for networks of distributed micro sensors, specifically in collaborative signal and information
processing and fusion of data. More specifically, information was received from sensors in re-
connaissance, surveillance, tracking, and targeting for battlefield operations. This work was an
essential precursor to the Emergent Sensor Plexus MURI from Penn State Universitys Applied
Research Laboratory (PSU/ARL), which incorporated the Brooks-Iyengar Algorithm to extend
SensITs advances to create practical and survivable sensor network applications.

The Brooks-Iyengar Algorithm has also been extended into modern-day LINUX and Android
operating systems. In these applications, the algorithm combines data to provide fault-tolerant
data fusion which is used by 99% of the worlds top supercomputers, 79% of all smartphones
worldwide, and 100% of users accessing the Internet, to provide seamless operations and service.

Figure 1. Apply Brooks-Iyengar Algorithm in The Trainp

2. FOUNDATIONAL FUSION RESULTS IN TRANSPORTATION APPLICATIONS

In this section of the paper, we present the theoretical applications of fusion, then demonstrate
a detailed application and simulation of the Brooks-Iyengar Algorithm in solving the safety
challenges of closing and opening the doors aboard moving trains. Accurately detect the state of
train door such as the variable to be measured is critical to the application.

2.1 Theory

In a fusion system, we want to fuse different interval values from sensors where τ represents the
number of them that are faulty. Suppose we have N sensors, which measures the variable value
of [l1, h1], ..., [lN , hN ].

Notations:

—vT : The ground truth value

—v: The output value of Brooks-Iyengar algorithm

—IBY : The output interval of the Brooks-Iyengar algorithm

—aN−2τ : The left endpoint of the region where N − 2τ non-faulty intervals overlap

—bN−2τ : The right endpoint of the region where N − 2τ non-faulty intervals overlap

—g : A set of N − τ valid measurements

—f : A set of τ faulty measurements

—G : The set of all possible valid measurements, so g ∈ G
—F : The set of all possible faulty measurements, so f ∈ F

We build three theorems to describe the performance of Brooks-Iyengar algorithm in a fusion
system. Theorem 1 and Theorem 2 identify the accuracy feature of Brooks-Iyengar algorithms.
Theorem 3 is the comparison of Brooks-Iyengar algorithm with other related algorithms.
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Theorem 1. In a system of N sensors which of them are faulty, vT ∈ IBY ⊆ [aN−2τ , bN−2τ ]
and

|v − vT | ≤ |IBY | ≤ min
τ+1
{|v| : v ∈ g}

Where, |IBY | is the length of the output interval, v and IBY is the output value and interval of
Brooks-Iyengar algorithm.

Proof. We assume all non-faulty intervals intersect on a common region, and we define it as
Iopt. Since there are at least N − τ non-faulty intervals, so the weight of Iopt is at least N − τ ,
and we have Iopt ⊆ IBY , so vT ∈ Iopt ⊆ IBY . Since there are at most τ faulty intervals and the
threshold of Brooks-Iyengar algorithm is N − τ , so only regions that are formed by non-faulty
intervals with weight equal or larger than N −2τ intersect with τ faulty intervals could be subset
of IBY . So [aN−2τ , bN−2τ ] is the upper bound of IBY , and IBY ⊆ [aN−2τ , bN−2τ ]. The equation,
|IBY | ≤ minτ+1{|v| : v ∈ g} has already been proved by Theorem 2 (Marzullo, 1990) as outlined
by Marzullo, and as illustrated below.

Theorem 2. The interval [aN−τ , bN−τ ] is smallest interval that is guaranteed to contain the
true value (Marzullo, 1990).

Proof. the proof is in Algorithm 1 (Marzullo, 1990)p, as follows.
Therefore, the algorithm below provides the fusion value v of the Brooks-Iyengar algorithm,

given the set of all possible valid measurements g and all possible faulty measurements f :
v = BY (g, f) : The fusion value v of Brooks-Iyengar algorithm given g and f p

Theorem 3. In a system of N sensors in which τ of them are faulty, then we have two sets
G and F , v = BY (g, f), where g ∈ G and f ∈ F , then we have:

max
g,f
|v − vT | ≤ max

g,f
|vABA − vT |

max
g,f
|v − vT | ≤ max

g,f
|vBV C − vT |

max
g,f
|v − vT | ≤ max

g,f
|vavg − vT |

Where vABA, vBV C and vavg are the results of Approximate Byzantine Agreement (ABA), Byzan-
tine Vector Consensus (BVC) (Vaidya and Garg, 2013) and naive average algorithm, here we
calculate the midpoints of the intervals as inputs of the two algorithms.

Proof. From Theorem 1 we know that, vT ∈ IBY ⊆ [aN−2τ , bN−2τ ], and from Proposition 4.1
in (Ao et al., 2016), we know there exists g ∈ G and f ∈ F such that vABA 6∈ [aN−2τ , bN−2τ ],
which means maxg,f |vABA − vT | ≥ max(|bN−2τ − vT |, |aN−2τ − vT |) ≥ maxg,f |v − vT |. So we
have maxg,f |v − vT | ≤ maxg,f |vABA − vT |. Similarly, from Proposition 4.2 in (Ao et al., 2016),
there exists g,f such that vBV C 6∈ [aN−2, bN−2], and we could easily prove maxg,f |v − vT | ≤
maxg,f |vBV C − vT |. Equation (2) of (Ao et al., 2016) shows that the naive average could not
tolerant fault so maxg,f |vavg − vT | =∞ and then maxg,f |v − vT | ≤ maxg,f |vavg − vT |.

3. IMPLEMENTATION

In this section, we show a cluster of sensors being used to detect the state of opening and closing
of the trains doors. The situation could involve more than one hundred sensors, where as many
as one third of the sensors could be faulty yet using the Brooks-Iyengar Algorithm, we can still
maintain accurate results.

Accurately detecting the state of the train’s door is very crucial for ensuring people’s safety.
However, traditional scheme uses a single sensor to detect the current or some other variables
of the train’s door system is not accurate when the sensor behaves fault. By leveraging Brooks-
Iyengar algorithm, we could use multiple sensors to measure variables (current, etc.) robustly
and accurately.
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For example, let us use 4 sensors, where one of them is faulty. Each sensor’s output is [vi −
σ, vi + σ], 1 ≤ i ≤ 4, where the uncertainty bound for non-faulty and faulty sensors is identical
for simplicity, so the ground truth vT could be any point within the bound for non-faulty sensors
but the output of fault sensor may not contain the ground truth vT . The simulation is as follows.

Figure 1. The Output of Brooks-Iyengar Algorithm

Figure 1 gives an example of the output of Brooks-Iyengar algorithm. The green line is ground
truth that has been pre-defined. We have 4 sensors to measure the variable, where one of them is
faulty. The blue line is the fused value of Brooks-Iyengar Algorithm and we could also find that
the ground truth lies in the upper bound and lower bound of Brooks-Iyengar Algorithm.

Figure 2. Comparison of Brooks-Iyengar Algorithm and Average

Figure 2 shows a comparison between Brooks-Iyengar algorithm and the naive average algo-
rithm. We assume that the distance between ground truth and faulty sensor reading is Gaussian
distribution. Then we run two algorithms in the same condition. From the simulation results,
we could find that the bound of Brooks-Iyengar algorithm always contains the ground truth,
while the output of naive average sometimes is far from the ground truth. Since the bound of
Brooks-Iyengar algorithm smallest bound to contain the ground truth, the green line that is not
in the bound must be faulty outputs, which are denoted by the red points.
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Figure 3. The Output of Two Algorithms When Faulty Values Increase

Figure 3 considers the output of Brooks-Iyengar algorithm and naive average, when the faulty
sensor reading keeps increasing. We could find that when the faulty sensor readings increase,
the output of naive average algorithm becomes larger and larger, which indicates its sensitive to
bad sensor readings. Both the output value and bound of Brooks-Iyengar algorithm are robust
when the faulty sensor reading becomes larger, which shows that the Brooks-Iyengar algorithm
is robust to outlier or faulty sensor readings.

4. CONCLUSION

In this train example, with acceleration and deceleration adversely affecting the sensor systems,
the authors induced an error in one of the sensors to examine the effectiveness of the Brooks-
Iyengar Algorithm in these applications. Since todays technology does not guarantee success
and safety in all situations, the Brooks-Iyengar algorithm can significantly improve the fault
tolerance of these systems, providing a greater margin of safety for operations. In doing so, there
are two important situations that are critical for the safety of passengers when embarking and
disembarking. Distributed sensing networks needed to control the train doors require a fusion of
the sensor inputs to provide accurate automatic opening and closing with minimum traction. An
automatic sensor network can be installed in the motor circuit to collect current data through a
wireless protocol. The data can be transmitted by cellular communication to servers, where the
Brooks-Iyengar distributed sensing algorithm can be applied to identify and categorize the data
signals to safely and automatically open and close the doors.

In this paper, the authors described and demonstrated the performance evaluation of the signal
output of Brooks-Iyengar algorithm in this application. Based upon the performance results, the
Brooks-Iyengar Algorithm provides the best robust algorithm for implementation under faulty
sensor conditions, such as those encountered in real-world transportation applications.
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